MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invinv Structured version   Visualization version   Unicode version

Theorem invinv 16430
Description: The inverse of the inverse of an isomorphism is itself. Proposition 3.14(1) of [Adamek] p. 29. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
invfval.b  |-  B  =  ( Base `  C
)
invfval.n  |-  N  =  (Inv `  C )
invfval.c  |-  ( ph  ->  C  e.  Cat )
invfval.x  |-  ( ph  ->  X  e.  B )
invfval.y  |-  ( ph  ->  Y  e.  B )
isoval.n  |-  I  =  (  Iso  `  C
)
invinv.f  |-  ( ph  ->  F  e.  ( X I Y ) )
Assertion
Ref Expression
invinv  |-  ( ph  ->  ( ( Y N X ) `  (
( X N Y ) `  F ) )  =  F )

Proof of Theorem invinv
StepHypRef Expression
1 invfval.b . . . 4  |-  B  =  ( Base `  C
)
2 invfval.n . . . 4  |-  N  =  (Inv `  C )
3 invfval.c . . . 4  |-  ( ph  ->  C  e.  Cat )
4 invfval.x . . . 4  |-  ( ph  ->  X  e.  B )
5 invfval.y . . . 4  |-  ( ph  ->  Y  e.  B )
61, 2, 3, 4, 5invsym2 16423 . . 3  |-  ( ph  ->  `' ( X N Y )  =  ( Y N X ) )
76fveq1d 6193 . 2  |-  ( ph  ->  ( `' ( X N Y ) `  ( ( X N Y ) `  F
) )  =  ( ( Y N X ) `  ( ( X N Y ) `
 F ) ) )
8 isoval.n . . . 4  |-  I  =  (  Iso  `  C
)
91, 2, 3, 4, 5, 8invf1o 16429 . . 3  |-  ( ph  ->  ( X N Y ) : ( X I Y ) -1-1-onto-> ( Y I X ) )
10 invinv.f . . 3  |-  ( ph  ->  F  e.  ( X I Y ) )
11 f1ocnvfv1 6532 . . 3  |-  ( ( ( X N Y ) : ( X I Y ) -1-1-onto-> ( Y I X )  /\  F  e.  ( X I Y ) )  -> 
( `' ( X N Y ) `  ( ( X N Y ) `  F
) )  =  F )
129, 10, 11syl2anc 693 . 2  |-  ( ph  ->  ( `' ( X N Y ) `  ( ( X N Y ) `  F
) )  =  F )
137, 12eqtr3d 2658 1  |-  ( ph  ->  ( ( Y N X ) `  (
( X N Y ) `  F ) )  =  F )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   `'ccnv 5113   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   Basecbs 15857   Catccat 16325  Invcinv 16405    Iso ciso 16406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-cat 16329  df-cid 16330  df-sect 16407  df-inv 16408  df-iso 16409
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator