MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invco Structured version   Visualization version   Unicode version

Theorem invco 16431
Description: The composition of two isomorphisms is an isomorphism, and the inverse is the composition of the individual inverses. Proposition 3.14(2) of [Adamek] p. 29. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
invfval.b  |-  B  =  ( Base `  C
)
invfval.n  |-  N  =  (Inv `  C )
invfval.c  |-  ( ph  ->  C  e.  Cat )
invfval.x  |-  ( ph  ->  X  e.  B )
invfval.y  |-  ( ph  ->  Y  e.  B )
isoval.n  |-  I  =  (  Iso  `  C
)
invinv.f  |-  ( ph  ->  F  e.  ( X I Y ) )
invco.o  |-  .x.  =  (comp `  C )
invco.z  |-  ( ph  ->  Z  e.  B )
invco.f  |-  ( ph  ->  G  e.  ( Y I Z ) )
Assertion
Ref Expression
invco  |-  ( ph  ->  ( G ( <. X ,  Y >.  .x. 
Z ) F ) ( X N Z ) ( ( ( X N Y ) `
 F ) (
<. Z ,  Y >.  .x. 
X ) ( ( Y N Z ) `
 G ) ) )

Proof of Theorem invco
StepHypRef Expression
1 invfval.b . . 3  |-  B  =  ( Base `  C
)
2 invco.o . . 3  |-  .x.  =  (comp `  C )
3 eqid 2622 . . 3  |-  (Sect `  C )  =  (Sect `  C )
4 invfval.c . . 3  |-  ( ph  ->  C  e.  Cat )
5 invfval.x . . 3  |-  ( ph  ->  X  e.  B )
6 invfval.y . . 3  |-  ( ph  ->  Y  e.  B )
7 invco.z . . 3  |-  ( ph  ->  Z  e.  B )
8 invinv.f . . . . . . 7  |-  ( ph  ->  F  e.  ( X I Y ) )
9 invfval.n . . . . . . . 8  |-  N  =  (Inv `  C )
10 isoval.n . . . . . . . 8  |-  I  =  (  Iso  `  C
)
111, 9, 4, 5, 6, 10isoval 16425 . . . . . . 7  |-  ( ph  ->  ( X I Y )  =  dom  ( X N Y ) )
128, 11eleqtrd 2703 . . . . . 6  |-  ( ph  ->  F  e.  dom  ( X N Y ) )
131, 9, 4, 5, 6invfun 16424 . . . . . . 7  |-  ( ph  ->  Fun  ( X N Y ) )
14 funfvbrb 6330 . . . . . . 7  |-  ( Fun  ( X N Y )  ->  ( F  e.  dom  ( X N Y )  <->  F ( X N Y ) ( ( X N Y ) `  F ) ) )
1513, 14syl 17 . . . . . 6  |-  ( ph  ->  ( F  e.  dom  ( X N Y )  <-> 
F ( X N Y ) ( ( X N Y ) `
 F ) ) )
1612, 15mpbid 222 . . . . 5  |-  ( ph  ->  F ( X N Y ) ( ( X N Y ) `
 F ) )
171, 9, 4, 5, 6, 3isinv 16420 . . . . 5  |-  ( ph  ->  ( F ( X N Y ) ( ( X N Y ) `  F )  <-> 
( F ( X (Sect `  C ) Y ) ( ( X N Y ) `
 F )  /\  ( ( X N Y ) `  F
) ( Y (Sect `  C ) X ) F ) ) )
1816, 17mpbid 222 . . . 4  |-  ( ph  ->  ( F ( X (Sect `  C ) Y ) ( ( X N Y ) `
 F )  /\  ( ( X N Y ) `  F
) ( Y (Sect `  C ) X ) F ) )
1918simpld 475 . . 3  |-  ( ph  ->  F ( X (Sect `  C ) Y ) ( ( X N Y ) `  F
) )
20 invco.f . . . . . . 7  |-  ( ph  ->  G  e.  ( Y I Z ) )
211, 9, 4, 6, 7, 10isoval 16425 . . . . . . 7  |-  ( ph  ->  ( Y I Z )  =  dom  ( Y N Z ) )
2220, 21eleqtrd 2703 . . . . . 6  |-  ( ph  ->  G  e.  dom  ( Y N Z ) )
231, 9, 4, 6, 7invfun 16424 . . . . . . 7  |-  ( ph  ->  Fun  ( Y N Z ) )
24 funfvbrb 6330 . . . . . . 7  |-  ( Fun  ( Y N Z )  ->  ( G  e.  dom  ( Y N Z )  <->  G ( Y N Z ) ( ( Y N Z ) `  G ) ) )
2523, 24syl 17 . . . . . 6  |-  ( ph  ->  ( G  e.  dom  ( Y N Z )  <-> 
G ( Y N Z ) ( ( Y N Z ) `
 G ) ) )
2622, 25mpbid 222 . . . . 5  |-  ( ph  ->  G ( Y N Z ) ( ( Y N Z ) `
 G ) )
271, 9, 4, 6, 7, 3isinv 16420 . . . . 5  |-  ( ph  ->  ( G ( Y N Z ) ( ( Y N Z ) `  G )  <-> 
( G ( Y (Sect `  C ) Z ) ( ( Y N Z ) `
 G )  /\  ( ( Y N Z ) `  G
) ( Z (Sect `  C ) Y ) G ) ) )
2826, 27mpbid 222 . . . 4  |-  ( ph  ->  ( G ( Y (Sect `  C ) Z ) ( ( Y N Z ) `
 G )  /\  ( ( Y N Z ) `  G
) ( Z (Sect `  C ) Y ) G ) )
2928simpld 475 . . 3  |-  ( ph  ->  G ( Y (Sect `  C ) Z ) ( ( Y N Z ) `  G
) )
301, 2, 3, 4, 5, 6, 7, 19, 29sectco 16416 . 2  |-  ( ph  ->  ( G ( <. X ,  Y >.  .x. 
Z ) F ) ( X (Sect `  C ) Z ) ( ( ( X N Y ) `  F ) ( <. Z ,  Y >.  .x. 
X ) ( ( Y N Z ) `
 G ) ) )
3128simprd 479 . . 3  |-  ( ph  ->  ( ( Y N Z ) `  G
) ( Z (Sect `  C ) Y ) G )
3218simprd 479 . . 3  |-  ( ph  ->  ( ( X N Y ) `  F
) ( Y (Sect `  C ) X ) F )
331, 2, 3, 4, 7, 6, 5, 31, 32sectco 16416 . 2  |-  ( ph  ->  ( ( ( X N Y ) `  F ) ( <. Z ,  Y >.  .x. 
X ) ( ( Y N Z ) `
 G ) ) ( Z (Sect `  C ) X ) ( G ( <. X ,  Y >.  .x. 
Z ) F ) )
341, 9, 4, 5, 7, 3isinv 16420 . 2  |-  ( ph  ->  ( ( G (
<. X ,  Y >.  .x. 
Z ) F ) ( X N Z ) ( ( ( X N Y ) `
 F ) (
<. Z ,  Y >.  .x. 
X ) ( ( Y N Z ) `
 G ) )  <-> 
( ( G (
<. X ,  Y >.  .x. 
Z ) F ) ( X (Sect `  C ) Z ) ( ( ( X N Y ) `  F ) ( <. Z ,  Y >.  .x. 
X ) ( ( Y N Z ) `
 G ) )  /\  ( ( ( X N Y ) `
 F ) (
<. Z ,  Y >.  .x. 
X ) ( ( Y N Z ) `
 G ) ) ( Z (Sect `  C ) X ) ( G ( <. X ,  Y >.  .x. 
Z ) F ) ) ) )
3530, 33, 34mpbir2and 957 1  |-  ( ph  ->  ( G ( <. X ,  Y >.  .x. 
Z ) F ) ( X N Z ) ( ( ( X N Y ) `
 F ) (
<. Z ,  Y >.  .x. 
X ) ( ( Y N Z ) `
 G ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   <.cop 4183   class class class wbr 4653   dom cdm 5114   Fun wfun 5882   ` cfv 5888  (class class class)co 6650   Basecbs 15857  compcco 15953   Catccat 16325  Sectcsect 16404  Invcinv 16405    Iso ciso 16406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-cat 16329  df-cid 16330  df-sect 16407  df-inv 16408  df-iso 16409
This theorem is referenced by:  isoco  16437  invisoinvl  16450
  Copyright terms: Public domain W3C validator