MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inviso2 Structured version   Visualization version   Unicode version

Theorem inviso2 16427
Description: If  G is an inverse to  F, then  G is an isomorphism. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
invfval.b  |-  B  =  ( Base `  C
)
invfval.n  |-  N  =  (Inv `  C )
invfval.c  |-  ( ph  ->  C  e.  Cat )
invfval.x  |-  ( ph  ->  X  e.  B )
invfval.y  |-  ( ph  ->  Y  e.  B )
isoval.n  |-  I  =  (  Iso  `  C
)
inviso1.1  |-  ( ph  ->  F ( X N Y ) G )
Assertion
Ref Expression
inviso2  |-  ( ph  ->  G  e.  ( Y I X ) )

Proof of Theorem inviso2
StepHypRef Expression
1 invfval.b . 2  |-  B  =  ( Base `  C
)
2 invfval.n . 2  |-  N  =  (Inv `  C )
3 invfval.c . 2  |-  ( ph  ->  C  e.  Cat )
4 invfval.y . 2  |-  ( ph  ->  Y  e.  B )
5 invfval.x . 2  |-  ( ph  ->  X  e.  B )
6 isoval.n . 2  |-  I  =  (  Iso  `  C
)
7 inviso1.1 . . 3  |-  ( ph  ->  F ( X N Y ) G )
81, 2, 3, 5, 4invsym 16422 . . 3  |-  ( ph  ->  ( F ( X N Y ) G  <-> 
G ( Y N X ) F ) )
97, 8mpbid 222 . 2  |-  ( ph  ->  G ( Y N X ) F )
101, 2, 3, 4, 5, 6, 9inviso1 16426 1  |-  ( ph  ->  G  e.  ( Y I X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   Catccat 16325  Invcinv 16405    Iso ciso 16406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-cat 16329  df-cid 16330  df-sect 16407  df-inv 16408  df-iso 16409
This theorem is referenced by:  yonffthlem  16922
  Copyright terms: Public domain W3C validator