MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  yonffthlem Structured version   Visualization version   Unicode version

Theorem yonffthlem 16922
Description: Lemma for yonffth 16924. (Contributed by Mario Carneiro, 29-Jan-2017.)
Hypotheses
Ref Expression
yoneda.y  |-  Y  =  (Yon `  C )
yoneda.b  |-  B  =  ( Base `  C
)
yoneda.1  |-  .1.  =  ( Id `  C )
yoneda.o  |-  O  =  (oppCat `  C )
yoneda.s  |-  S  =  ( SetCat `  U )
yoneda.t  |-  T  =  ( SetCat `  V )
yoneda.q  |-  Q  =  ( O FuncCat  S )
yoneda.h  |-  H  =  (HomF
`  Q )
yoneda.r  |-  R  =  ( ( Q  X.c  O
) FuncCat  T )
yoneda.e  |-  E  =  ( O evalF  S )
yoneda.z  |-  Z  =  ( H  o.func  ( ( <. ( 1st `  Y
) , tpos  ( 2nd `  Y ) >.  o.func  ( Q  2ndF  O ) ) ⟨,⟩F  ( Q  1stF  O )
) )
yoneda.c  |-  ( ph  ->  C  e.  Cat )
yoneda.w  |-  ( ph  ->  V  e.  W )
yoneda.u  |-  ( ph  ->  ran  ( Hom f  `  C ) 
C_  U )
yoneda.v  |-  ( ph  ->  ( ran  ( Hom f  `  Q )  u.  U
)  C_  V )
yoneda.m  |-  M  =  ( f  e.  ( O  Func  S ) ,  x  e.  B  |->  ( a  e.  ( ( ( 1st `  Y
) `  x )
( O Nat  S ) f )  |->  ( ( a `  x ) `
 (  .1.  `  x ) ) ) )
yonedainv.i  |-  I  =  (Inv `  R )
yonedainv.n  |-  N  =  ( f  e.  ( O  Func  S ) ,  x  e.  B  |->  ( u  e.  ( ( 1st `  f
) `  x )  |->  ( y  e.  B  |->  ( g  e.  ( y ( Hom  `  C
) x )  |->  ( ( ( x ( 2nd `  f ) y ) `  g
) `  u )
) ) ) )
Assertion
Ref Expression
yonffthlem  |-  ( ph  ->  Y  e.  ( ( C Full  Q )  i^i  ( C Faith  Q ) ) )
Distinct variable groups:    f, a,
g, x, y,  .1.    u, a, g, y, C, f, x    E, a, f, g, u, y    B, a, f, g, u, x, y    N, a    O, a, f, g, u, x, y    S, a, f, g, u, x, y    g, M, u, y    Q, a, f, g, u, x    T, f, g, u, y    ph, a,
f, g, u, x, y    u, R    Y, a, f, g, u, x, y    Z, a, f, g, u, x, y
Allowed substitution hints:    Q( y)    R( x, y, f, g, a)    T( x, a)    U( x, y, u, f, g, a)    .1. ( u)    E( x)    H( x, y, u, f, g, a)    I( x, y, u, f, g, a)    M( x, f, a)    N( x, y, u, f, g)    V( x, y, u, f, g, a)    W( x, y, u, f, g, a)

Proof of Theorem yonffthlem
Dummy variables  h  w  z  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfunc 16522 . . 3  |-  Rel  ( C  Func  Q )
2 yoneda.y . . . 4  |-  Y  =  (Yon `  C )
3 yoneda.c . . . 4  |-  ( ph  ->  C  e.  Cat )
4 yoneda.o . . . 4  |-  O  =  (oppCat `  C )
5 yoneda.s . . . 4  |-  S  =  ( SetCat `  U )
6 yoneda.q . . . 4  |-  Q  =  ( O FuncCat  S )
7 yoneda.w . . . . 5  |-  ( ph  ->  V  e.  W )
8 yoneda.v . . . . . 6  |-  ( ph  ->  ( ran  ( Hom f  `  Q )  u.  U
)  C_  V )
98unssbd 3791 . . . . 5  |-  ( ph  ->  U  C_  V )
107, 9ssexd 4805 . . . 4  |-  ( ph  ->  U  e.  _V )
11 yoneda.u . . . 4  |-  ( ph  ->  ran  ( Hom f  `  C ) 
C_  U )
122, 3, 4, 5, 6, 10, 11yoncl 16902 . . 3  |-  ( ph  ->  Y  e.  ( C 
Func  Q ) )
13 1st2nd 7214 . . 3  |-  ( ( Rel  ( C  Func  Q )  /\  Y  e.  ( C  Func  Q
) )  ->  Y  =  <. ( 1st `  Y
) ,  ( 2nd `  Y ) >. )
141, 12, 13sylancr 695 . 2  |-  ( ph  ->  Y  =  <. ( 1st `  Y ) ,  ( 2nd `  Y
) >. )
15 1st2ndbr 7217 . . . . 5  |-  ( ( Rel  ( C  Func  Q )  /\  Y  e.  ( C  Func  Q
) )  ->  ( 1st `  Y ) ( C  Func  Q )
( 2nd `  Y
) )
161, 12, 15sylancr 695 . . . 4  |-  ( ph  ->  ( 1st `  Y
) ( C  Func  Q ) ( 2nd `  Y
) )
17 yoneda.b . . . . . . . . . . . . 13  |-  B  =  ( Base `  C
)
186fucbas 16620 . . . . . . . . . . . . 13  |-  ( O 
Func  S )  =  (
Base `  Q )
1917, 18, 16funcf1 16526 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1st `  Y
) : B --> ( O 
Func  S ) )
2019adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( 1st `  Y
) : B --> ( O 
Func  S ) )
21 simprr 796 . . . . . . . . . . 11  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  ->  w  e.  B )
2220, 21ffvelrnd 6360 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( ( 1st `  Y
) `  w )  e.  ( O  Func  S
) )
23 simprl 794 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
z  e.  B )
24 opelxpi 5148 . . . . . . . . . 10  |-  ( ( ( ( 1st `  Y
) `  w )  e.  ( O  Func  S
)  /\  z  e.  B )  ->  <. (
( 1st `  Y
) `  w ) ,  z >.  e.  ( ( O  Func  S
)  X.  B ) )
2522, 23, 24syl2anc 693 . . . . . . . . 9  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  ->  <. ( ( 1st `  Y
) `  w ) ,  z >.  e.  ( ( O  Func  S
)  X.  B ) )
26 yoneda.r . . . . . . . . . . . . . 14  |-  R  =  ( ( Q  X.c  O
) FuncCat  T )
2726fucbas 16620 . . . . . . . . . . . . 13  |-  ( ( Q  X.c  O )  Func  T
)  =  ( Base `  R )
28 yonedainv.i . . . . . . . . . . . . 13  |-  I  =  (Inv `  R )
29 yoneda.1 . . . . . . . . . . . . . . . . . 18  |-  .1.  =  ( Id `  C )
30 yoneda.t . . . . . . . . . . . . . . . . . 18  |-  T  =  ( SetCat `  V )
31 yoneda.h . . . . . . . . . . . . . . . . . 18  |-  H  =  (HomF
`  Q )
32 yoneda.e . . . . . . . . . . . . . . . . . 18  |-  E  =  ( O evalF  S )
33 yoneda.z . . . . . . . . . . . . . . . . . 18  |-  Z  =  ( H  o.func  ( ( <. ( 1st `  Y
) , tpos  ( 2nd `  Y ) >.  o.func  ( Q  2ndF  O ) ) ⟨,⟩F  ( Q  1stF  O )
) )
342, 17, 29, 4, 5, 30, 6, 31, 26, 32, 33, 3, 7, 11, 8yonedalem1 16912 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( Z  e.  ( ( Q  X.c  O ) 
Func  T )  /\  E  e.  ( ( Q  X.c  O
)  Func  T )
) )
3534simpld 475 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  Z  e.  ( ( Q  X.c  O )  Func  T
) )
36 funcrcl 16523 . . . . . . . . . . . . . . . 16  |-  ( Z  e.  ( ( Q  X.c  O )  Func  T
)  ->  ( ( Q  X.c  O )  e.  Cat  /\  T  e.  Cat )
)
3735, 36syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( Q  X.c  O
)  e.  Cat  /\  T  e.  Cat )
)
3837simpld 475 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( Q  X.c  O )  e.  Cat )
3937simprd 479 . . . . . . . . . . . . . 14  |-  ( ph  ->  T  e.  Cat )
4026, 38, 39fuccat 16630 . . . . . . . . . . . . 13  |-  ( ph  ->  R  e.  Cat )
4134simprd 479 . . . . . . . . . . . . 13  |-  ( ph  ->  E  e.  ( ( Q  X.c  O )  Func  T
) )
42 eqid 2622 . . . . . . . . . . . . 13  |-  (  Iso  `  R )  =  (  Iso  `  R )
43 yoneda.m . . . . . . . . . . . . . 14  |-  M  =  ( f  e.  ( O  Func  S ) ,  x  e.  B  |->  ( a  e.  ( ( ( 1st `  Y
) `  x )
( O Nat  S ) f )  |->  ( ( a `  x ) `
 (  .1.  `  x ) ) ) )
44 yonedainv.n . . . . . . . . . . . . . 14  |-  N  =  ( f  e.  ( O  Func  S ) ,  x  e.  B  |->  ( u  e.  ( ( 1st `  f
) `  x )  |->  ( y  e.  B  |->  ( g  e.  ( y ( Hom  `  C
) x )  |->  ( ( ( x ( 2nd `  f ) y ) `  g
) `  u )
) ) ) )
452, 17, 29, 4, 5, 30, 6, 31, 26, 32, 33, 3, 7, 11, 8, 43, 28, 44yonedainv 16921 . . . . . . . . . . . . 13  |-  ( ph  ->  M ( Z I E ) N )
4627, 28, 40, 35, 41, 42, 45inviso2 16427 . . . . . . . . . . . 12  |-  ( ph  ->  N  e.  ( E (  Iso  `  R
) Z ) )
47 eqid 2622 . . . . . . . . . . . . . 14  |-  ( Q  X.c  O )  =  ( Q  X.c  O )
484, 17oppcbas 16378 . . . . . . . . . . . . . 14  |-  B  =  ( Base `  O
)
4947, 18, 48xpcbas 16818 . . . . . . . . . . . . 13  |-  ( ( O  Func  S )  X.  B )  =  (
Base `  ( Q  X.c  O ) )
50 eqid 2622 . . . . . . . . . . . . 13  |-  ( ( Q  X.c  O ) Nat  T )  =  ( ( Q  X.c  O ) Nat  T )
51 eqid 2622 . . . . . . . . . . . . 13  |-  (  Iso  `  T )  =  (  Iso  `  T )
5226, 49, 50, 41, 35, 42, 51fuciso 16635 . . . . . . . . . . . 12  |-  ( ph  ->  ( N  e.  ( E (  Iso  `  R
) Z )  <->  ( N  e.  ( E ( ( Q  X.c  O ) Nat  T ) Z )  /\  A. v  e.  ( ( O  Func  S )  X.  B ) ( N `
 v )  e.  ( ( ( 1st `  E ) `  v
) (  Iso  `  T
) ( ( 1st `  Z ) `  v
) ) ) ) )
5346, 52mpbid 222 . . . . . . . . . . 11  |-  ( ph  ->  ( N  e.  ( E ( ( Q  X.c  O ) Nat  T ) Z )  /\  A. v  e.  ( ( O  Func  S )  X.  B ) ( N `
 v )  e.  ( ( ( 1st `  E ) `  v
) (  Iso  `  T
) ( ( 1st `  Z ) `  v
) ) ) )
5453simprd 479 . . . . . . . . . 10  |-  ( ph  ->  A. v  e.  ( ( O  Func  S
)  X.  B ) ( N `  v
)  e.  ( ( ( 1st `  E
) `  v )
(  Iso  `  T ) ( ( 1st `  Z
) `  v )
) )
5554adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  ->  A. v  e.  (
( O  Func  S
)  X.  B ) ( N `  v
)  e.  ( ( ( 1st `  E
) `  v )
(  Iso  `  T ) ( ( 1st `  Z
) `  v )
) )
56 fveq2 6191 . . . . . . . . . . . 12  |-  ( v  =  <. ( ( 1st `  Y ) `  w
) ,  z >.  ->  ( N `  v
)  =  ( N `
 <. ( ( 1st `  Y ) `  w
) ,  z >.
) )
57 df-ov 6653 . . . . . . . . . . . 12  |-  ( ( ( 1st `  Y
) `  w ) N z )  =  ( N `  <. ( ( 1st `  Y
) `  w ) ,  z >. )
5856, 57syl6eqr 2674 . . . . . . . . . . 11  |-  ( v  =  <. ( ( 1st `  Y ) `  w
) ,  z >.  ->  ( N `  v
)  =  ( ( ( 1st `  Y
) `  w ) N z ) )
59 fveq2 6191 . . . . . . . . . . . . 13  |-  ( v  =  <. ( ( 1st `  Y ) `  w
) ,  z >.  ->  ( ( 1st `  E
) `  v )  =  ( ( 1st `  E ) `  <. ( ( 1st `  Y
) `  w ) ,  z >. )
)
60 df-ov 6653 . . . . . . . . . . . . 13  |-  ( ( ( 1st `  Y
) `  w )
( 1st `  E
) z )  =  ( ( 1st `  E
) `  <. ( ( 1st `  Y ) `
 w ) ,  z >. )
6159, 60syl6eqr 2674 . . . . . . . . . . . 12  |-  ( v  =  <. ( ( 1st `  Y ) `  w
) ,  z >.  ->  ( ( 1st `  E
) `  v )  =  ( ( ( 1st `  Y ) `
 w ) ( 1st `  E ) z ) )
62 fveq2 6191 . . . . . . . . . . . . 13  |-  ( v  =  <. ( ( 1st `  Y ) `  w
) ,  z >.  ->  ( ( 1st `  Z
) `  v )  =  ( ( 1st `  Z ) `  <. ( ( 1st `  Y
) `  w ) ,  z >. )
)
63 df-ov 6653 . . . . . . . . . . . . 13  |-  ( ( ( 1st `  Y
) `  w )
( 1st `  Z
) z )  =  ( ( 1st `  Z
) `  <. ( ( 1st `  Y ) `
 w ) ,  z >. )
6462, 63syl6eqr 2674 . . . . . . . . . . . 12  |-  ( v  =  <. ( ( 1st `  Y ) `  w
) ,  z >.  ->  ( ( 1st `  Z
) `  v )  =  ( ( ( 1st `  Y ) `
 w ) ( 1st `  Z ) z ) )
6561, 64oveq12d 6668 . . . . . . . . . . 11  |-  ( v  =  <. ( ( 1st `  Y ) `  w
) ,  z >.  ->  ( ( ( 1st `  E ) `  v
) (  Iso  `  T
) ( ( 1st `  Z ) `  v
) )  =  ( ( ( ( 1st `  Y ) `  w
) ( 1st `  E
) z ) (  Iso  `  T )
( ( ( 1st `  Y ) `  w
) ( 1st `  Z
) z ) ) )
6658, 65eleq12d 2695 . . . . . . . . . 10  |-  ( v  =  <. ( ( 1st `  Y ) `  w
) ,  z >.  ->  ( ( N `  v )  e.  ( ( ( 1st `  E
) `  v )
(  Iso  `  T ) ( ( 1st `  Z
) `  v )
)  <->  ( ( ( 1st `  Y ) `
 w ) N z )  e.  ( ( ( ( 1st `  Y ) `  w
) ( 1st `  E
) z ) (  Iso  `  T )
( ( ( 1st `  Y ) `  w
) ( 1st `  Z
) z ) ) ) )
6766rspcv 3305 . . . . . . . . 9  |-  ( <.
( ( 1st `  Y
) `  w ) ,  z >.  e.  ( ( O  Func  S
)  X.  B )  ->  ( A. v  e.  ( ( O  Func  S )  X.  B ) ( N `  v
)  e.  ( ( ( 1st `  E
) `  v )
(  Iso  `  T ) ( ( 1st `  Z
) `  v )
)  ->  ( (
( 1st `  Y
) `  w ) N z )  e.  ( ( ( ( 1st `  Y ) `
 w ) ( 1st `  E ) z ) (  Iso  `  T ) ( ( ( 1st `  Y
) `  w )
( 1st `  Z
) z ) ) ) )
6825, 55, 67sylc 65 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( ( ( 1st `  Y ) `  w
) N z )  e.  ( ( ( ( 1st `  Y
) `  w )
( 1st `  E
) z ) (  Iso  `  T )
( ( ( 1st `  Y ) `  w
) ( 1st `  Z
) z ) ) )
694oppccat 16382 . . . . . . . . . . . . 13  |-  ( C  e.  Cat  ->  O  e.  Cat )
703, 69syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  O  e.  Cat )
7170adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  ->  O  e.  Cat )
725setccat 16735 . . . . . . . . . . . . 13  |-  ( U  e.  _V  ->  S  e.  Cat )
7310, 72syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  S  e.  Cat )
7473adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  ->  S  e.  Cat )
7532, 71, 74, 48, 22, 23evlf1 16860 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( ( ( 1st `  Y ) `  w
) ( 1st `  E
) z )  =  ( ( 1st `  (
( 1st `  Y
) `  w )
) `  z )
)
763adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  ->  C  e.  Cat )
77 eqid 2622 . . . . . . . . . . 11  |-  ( Hom  `  C )  =  ( Hom  `  C )
782, 17, 76, 21, 77, 23yon11 16904 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( ( 1st `  (
( 1st `  Y
) `  w )
) `  z )  =  ( z ( Hom  `  C )
w ) )
7975, 78eqtrd 2656 . . . . . . . . 9  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( ( ( 1st `  Y ) `  w
) ( 1st `  E
) z )  =  ( z ( Hom  `  C ) w ) )
807adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  ->  V  e.  W )
8111adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  ->  ran  ( Hom f  `  C )  C_  U )
828adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( ran  ( Hom f  `  Q
)  u.  U ) 
C_  V )
832, 17, 29, 4, 5, 30, 6, 31, 26, 32, 33, 76, 80, 81, 82, 22, 23yonedalem21 16913 . . . . . . . . 9  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( ( ( 1st `  Y ) `  w
) ( 1st `  Z
) z )  =  ( ( ( 1st `  Y ) `  z
) ( O Nat  S
) ( ( 1st `  Y ) `  w
) ) )
8479, 83oveq12d 6668 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( ( ( ( 1st `  Y ) `
 w ) ( 1st `  E ) z ) (  Iso  `  T ) ( ( ( 1st `  Y
) `  w )
( 1st `  Z
) z ) )  =  ( ( z ( Hom  `  C
) w ) (  Iso  `  T )
( ( ( 1st `  Y ) `  z
) ( O Nat  S
) ( ( 1st `  Y ) `  w
) ) ) )
8568, 84eleqtrd 2703 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( ( ( 1st `  Y ) `  w
) N z )  e.  ( ( z ( Hom  `  C
) w ) (  Iso  `  T )
( ( ( 1st `  Y ) `  z
) ( O Nat  S
) ( ( 1st `  Y ) `  w
) ) ) )
869adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  ->  U  C_  V )
87 eqid 2622 . . . . . . . . . . . . 13  |-  ( Base `  S )  =  (
Base `  S )
88 relfunc 16522 . . . . . . . . . . . . . 14  |-  Rel  ( O  Func  S )
89 1st2ndbr 7217 . . . . . . . . . . . . . 14  |-  ( ( Rel  ( O  Func  S )  /\  ( ( 1st `  Y ) `
 w )  e.  ( O  Func  S
) )  ->  ( 1st `  ( ( 1st `  Y ) `  w
) ) ( O 
Func  S ) ( 2nd `  ( ( 1st `  Y
) `  w )
) )
9088, 22, 89sylancr 695 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( 1st `  (
( 1st `  Y
) `  w )
) ( O  Func  S ) ( 2nd `  (
( 1st `  Y
) `  w )
) )
9148, 87, 90funcf1 16526 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( 1st `  (
( 1st `  Y
) `  w )
) : B --> ( Base `  S ) )
9291, 23ffvelrnd 6360 . . . . . . . . . . 11  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( ( 1st `  (
( 1st `  Y
) `  w )
) `  z )  e.  ( Base `  S
) )
935, 10setcbas 16728 . . . . . . . . . . . 12  |-  ( ph  ->  U  =  ( Base `  S ) )
9493adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  ->  U  =  ( Base `  S ) )
9592, 94eleqtrrd 2704 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( ( 1st `  (
( 1st `  Y
) `  w )
) `  z )  e.  U )
9678, 95eqeltrrd 2702 . . . . . . . . 9  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( z ( Hom  `  C ) w )  e.  U )
9786, 96sseldd 3604 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( z ( Hom  `  C ) w )  e.  V )
98 eqid 2622 . . . . . . . . . 10  |-  ( Hom f  `  Q )  =  ( Hom f  `  Q )
99 eqid 2622 . . . . . . . . . . 11  |-  ( O Nat 
S )  =  ( O Nat  S )
1006, 99fuchom 16621 . . . . . . . . . 10  |-  ( O Nat 
S )  =  ( Hom  `  Q )
10120, 23ffvelrnd 6360 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( ( 1st `  Y
) `  z )  e.  ( O  Func  S
) )
10298, 18, 100, 101, 22homfval 16352 . . . . . . . . 9  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( ( ( 1st `  Y ) `  z
) ( Hom f  `  Q ) ( ( 1st `  Y
) `  w )
)  =  ( ( ( 1st `  Y
) `  z )
( O Nat  S ) ( ( 1st `  Y
) `  w )
) )
1038unssad 3790 . . . . . . . . . . 11  |-  ( ph  ->  ran  ( Hom f  `  Q ) 
C_  V )
104103adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  ->  ran  ( Hom f  `  Q )  C_  V )
10598, 18homffn 16353 . . . . . . . . . . . 12  |-  ( Hom f  `  Q )  Fn  (
( O  Func  S
)  X.  ( O 
Func  S ) )
106105a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( Hom f  `  Q )  Fn  ( ( O  Func  S )  X.  ( O 
Func  S ) ) )
107 fnovrn 6809 . . . . . . . . . . 11  |-  ( ( ( Hom f  `  Q )  Fn  ( ( O  Func  S )  X.  ( O 
Func  S ) )  /\  ( ( 1st `  Y
) `  z )  e.  ( O  Func  S
)  /\  ( ( 1st `  Y ) `  w )  e.  ( O  Func  S )
)  ->  ( (
( 1st `  Y
) `  z )
( Hom f  `  Q ) ( ( 1st `  Y
) `  w )
)  e.  ran  ( Hom f  `  Q ) )
108106, 101, 22, 107syl3anc 1326 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( ( ( 1st `  Y ) `  z
) ( Hom f  `  Q ) ( ( 1st `  Y
) `  w )
)  e.  ran  ( Hom f  `  Q ) )
109104, 108sseldd 3604 . . . . . . . . 9  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( ( ( 1st `  Y ) `  z
) ( Hom f  `  Q ) ( ( 1st `  Y
) `  w )
)  e.  V )
110102, 109eqeltrrd 2702 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( ( ( 1st `  Y ) `  z
) ( O Nat  S
) ( ( 1st `  Y ) `  w
) )  e.  V
)
11130, 80, 97, 110, 51setciso 16741 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( ( ( ( 1st `  Y ) `
 w ) N z )  e.  ( ( z ( Hom  `  C ) w ) (  Iso  `  T
) ( ( ( 1st `  Y ) `
 z ) ( O Nat  S ) ( ( 1st `  Y
) `  w )
) )  <->  ( (
( 1st `  Y
) `  w ) N z ) : ( z ( Hom  `  C ) w ) -1-1-onto-> ( ( ( 1st `  Y
) `  z )
( O Nat  S ) ( ( 1st `  Y
) `  w )
) ) )
11285, 111mpbid 222 . . . . . 6  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( ( ( 1st `  Y ) `  w
) N z ) : ( z ( Hom  `  C )
w ) -1-1-onto-> ( ( ( 1st `  Y ) `  z
) ( O Nat  S
) ( ( 1st `  Y ) `  w
) ) )
11376adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
z  e.  B  /\  w  e.  B )
)  /\  h  e.  ( z ( Hom  `  C ) w ) )  ->  C  e.  Cat )
114113adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( z  e.  B  /\  w  e.  B
) )  /\  h  e.  ( z ( Hom  `  C ) w ) )  /\  y  e.  B )  ->  C  e.  Cat )
11523adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
z  e.  B  /\  w  e.  B )
)  /\  h  e.  ( z ( Hom  `  C ) w ) )  ->  z  e.  B )
116115adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( z  e.  B  /\  w  e.  B
) )  /\  h  e.  ( z ( Hom  `  C ) w ) )  /\  y  e.  B )  ->  z  e.  B )
117 simpr 477 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( z  e.  B  /\  w  e.  B
) )  /\  h  e.  ( z ( Hom  `  C ) w ) )  /\  y  e.  B )  ->  y  e.  B )
1182, 17, 114, 116, 77, 117yon11 16904 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( z  e.  B  /\  w  e.  B
) )  /\  h  e.  ( z ( Hom  `  C ) w ) )  /\  y  e.  B )  ->  (
( 1st `  (
( 1st `  Y
) `  z )
) `  y )  =  ( y ( Hom  `  C )
z ) )
119118eqcomd 2628 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( z  e.  B  /\  w  e.  B
) )  /\  h  e.  ( z ( Hom  `  C ) w ) )  /\  y  e.  B )  ->  (
y ( Hom  `  C
) z )  =  ( ( 1st `  (
( 1st `  Y
) `  z )
) `  y )
)
120114adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  ( z  e.  B  /\  w  e.  B
) )  /\  h  e.  ( z ( Hom  `  C ) w ) )  /\  y  e.  B )  /\  g  e.  ( y ( Hom  `  C ) z ) )  ->  C  e.  Cat )
12121ad3antrrr 766 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  ( z  e.  B  /\  w  e.  B
) )  /\  h  e.  ( z ( Hom  `  C ) w ) )  /\  y  e.  B )  /\  g  e.  ( y ( Hom  `  C ) z ) )  ->  w  e.  B )
122116adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  ( z  e.  B  /\  w  e.  B
) )  /\  h  e.  ( z ( Hom  `  C ) w ) )  /\  y  e.  B )  /\  g  e.  ( y ( Hom  `  C ) z ) )  ->  z  e.  B )
123 eqid 2622 . . . . . . . . . . . . . . 15  |-  (comp `  C )  =  (comp `  C )
124117adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  ( z  e.  B  /\  w  e.  B
) )  /\  h  e.  ( z ( Hom  `  C ) w ) )  /\  y  e.  B )  /\  g  e.  ( y ( Hom  `  C ) z ) )  ->  y  e.  B )
125 simpr 477 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  ( z  e.  B  /\  w  e.  B
) )  /\  h  e.  ( z ( Hom  `  C ) w ) )  /\  y  e.  B )  /\  g  e.  ( y ( Hom  `  C ) z ) )  ->  g  e.  ( y ( Hom  `  C ) z ) )
126 simpllr 799 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  ( z  e.  B  /\  w  e.  B
) )  /\  h  e.  ( z ( Hom  `  C ) w ) )  /\  y  e.  B )  /\  g  e.  ( y ( Hom  `  C ) z ) )  ->  h  e.  ( z ( Hom  `  C ) w ) )
1272, 17, 120, 121, 77, 122, 123, 124, 125, 126yon12 16905 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  ( z  e.  B  /\  w  e.  B
) )  /\  h  e.  ( z ( Hom  `  C ) w ) )  /\  y  e.  B )  /\  g  e.  ( y ( Hom  `  C ) z ) )  ->  ( (
( z ( 2nd `  ( ( 1st `  Y
) `  w )
) y ) `  g ) `  h
)  =  ( h ( <. y ,  z
>. (comp `  C )
w ) g ) )
1282, 17, 120, 122, 77, 121, 123, 124, 126, 125yon2 16906 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  ( z  e.  B  /\  w  e.  B
) )  /\  h  e.  ( z ( Hom  `  C ) w ) )  /\  y  e.  B )  /\  g  e.  ( y ( Hom  `  C ) z ) )  ->  ( (
( ( z ( 2nd `  Y ) w ) `  h
) `  y ) `  g )  =  ( h ( <. y ,  z >. (comp `  C ) w ) g ) )
129127, 128eqtr4d 2659 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  ( z  e.  B  /\  w  e.  B
) )  /\  h  e.  ( z ( Hom  `  C ) w ) )  /\  y  e.  B )  /\  g  e.  ( y ( Hom  `  C ) z ) )  ->  ( (
( z ( 2nd `  ( ( 1st `  Y
) `  w )
) y ) `  g ) `  h
)  =  ( ( ( ( z ( 2nd `  Y ) w ) `  h
) `  y ) `  g ) )
130119, 129mpteq12dva 4732 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( z  e.  B  /\  w  e.  B
) )  /\  h  e.  ( z ( Hom  `  C ) w ) )  /\  y  e.  B )  ->  (
g  e.  ( y ( Hom  `  C
) z )  |->  ( ( ( z ( 2nd `  ( ( 1st `  Y ) `
 w ) ) y ) `  g
) `  h )
)  =  ( g  e.  ( ( 1st `  ( ( 1st `  Y
) `  z )
) `  y )  |->  ( ( ( ( z ( 2nd `  Y
) w ) `  h ) `  y
) `  g )
) )
13116adantr 481 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( 1st `  Y
) ( C  Func  Q ) ( 2nd `  Y
) )
13217, 77, 100, 131, 23, 21funcf2 16528 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( z ( 2nd `  Y ) w ) : ( z ( Hom  `  C )
w ) --> ( ( ( 1st `  Y
) `  z )
( O Nat  S ) ( ( 1st `  Y
) `  w )
) )
133132ffvelrnda 6359 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
z  e.  B  /\  w  e.  B )
)  /\  h  e.  ( z ( Hom  `  C ) w ) )  ->  ( (
z ( 2nd `  Y
) w ) `  h )  e.  ( ( ( 1st `  Y
) `  z )
( O Nat  S ) ( ( 1st `  Y
) `  w )
) )
13499, 133nat1st2nd 16611 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
z  e.  B  /\  w  e.  B )
)  /\  h  e.  ( z ( Hom  `  C ) w ) )  ->  ( (
z ( 2nd `  Y
) w ) `  h )  e.  (
<. ( 1st `  (
( 1st `  Y
) `  z )
) ,  ( 2nd `  ( ( 1st `  Y
) `  z )
) >. ( O Nat  S
) <. ( 1st `  (
( 1st `  Y
) `  w )
) ,  ( 2nd `  ( ( 1st `  Y
) `  w )
) >. ) )
135134adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( z  e.  B  /\  w  e.  B
) )  /\  h  e.  ( z ( Hom  `  C ) w ) )  /\  y  e.  B )  ->  (
( z ( 2nd `  Y ) w ) `
 h )  e.  ( <. ( 1st `  (
( 1st `  Y
) `  z )
) ,  ( 2nd `  ( ( 1st `  Y
) `  z )
) >. ( O Nat  S
) <. ( 1st `  (
( 1st `  Y
) `  w )
) ,  ( 2nd `  ( ( 1st `  Y
) `  w )
) >. ) )
136 eqid 2622 . . . . . . . . . . . . . . 15  |-  ( Hom  `  S )  =  ( Hom  `  S )
13799, 135, 48, 136, 117natcl 16613 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( z  e.  B  /\  w  e.  B
) )  /\  h  e.  ( z ( Hom  `  C ) w ) )  /\  y  e.  B )  ->  (
( ( z ( 2nd `  Y ) w ) `  h
) `  y )  e.  ( ( ( 1st `  ( ( 1st `  Y
) `  z )
) `  y )
( Hom  `  S ) ( ( 1st `  (
( 1st `  Y
) `  w )
) `  y )
) )
13810adantr 481 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  ->  U  e.  _V )
139138ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( z  e.  B  /\  w  e.  B
) )  /\  h  e.  ( z ( Hom  `  C ) w ) )  /\  y  e.  B )  ->  U  e.  _V )
14019ad2antrr 762 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
z  e.  B  /\  w  e.  B )
)  /\  h  e.  ( z ( Hom  `  C ) w ) )  ->  ( 1st `  Y ) : B --> ( O  Func  S ) )
141140, 115ffvelrnd 6360 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
z  e.  B  /\  w  e.  B )
)  /\  h  e.  ( z ( Hom  `  C ) w ) )  ->  ( ( 1st `  Y ) `  z )  e.  ( O  Func  S )
)
142 1st2ndbr 7217 . . . . . . . . . . . . . . . . . . 19  |-  ( ( Rel  ( O  Func  S )  /\  ( ( 1st `  Y ) `
 z )  e.  ( O  Func  S
) )  ->  ( 1st `  ( ( 1st `  Y ) `  z
) ) ( O 
Func  S ) ( 2nd `  ( ( 1st `  Y
) `  z )
) )
14388, 141, 142sylancr 695 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
z  e.  B  /\  w  e.  B )
)  /\  h  e.  ( z ( Hom  `  C ) w ) )  ->  ( 1st `  ( ( 1st `  Y
) `  z )
) ( O  Func  S ) ( 2nd `  (
( 1st `  Y
) `  z )
) )
14448, 87, 143funcf1 16526 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
z  e.  B  /\  w  e.  B )
)  /\  h  e.  ( z ( Hom  `  C ) w ) )  ->  ( 1st `  ( ( 1st `  Y
) `  z )
) : B --> ( Base `  S ) )
145144ffvelrnda 6359 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( z  e.  B  /\  w  e.  B
) )  /\  h  e.  ( z ( Hom  `  C ) w ) )  /\  y  e.  B )  ->  (
( 1st `  (
( 1st `  Y
) `  z )
) `  y )  e.  ( Base `  S
) )
14694ad2antrr 762 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( z  e.  B  /\  w  e.  B
) )  /\  h  e.  ( z ( Hom  `  C ) w ) )  /\  y  e.  B )  ->  U  =  ( Base `  S
) )
147145, 146eleqtrrd 2704 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( z  e.  B  /\  w  e.  B
) )  /\  h  e.  ( z ( Hom  `  C ) w ) )  /\  y  e.  B )  ->  (
( 1st `  (
( 1st `  Y
) `  z )
) `  y )  e.  U )
14891adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
z  e.  B  /\  w  e.  B )
)  /\  h  e.  ( z ( Hom  `  C ) w ) )  ->  ( 1st `  ( ( 1st `  Y
) `  w )
) : B --> ( Base `  S ) )
149148ffvelrnda 6359 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( z  e.  B  /\  w  e.  B
) )  /\  h  e.  ( z ( Hom  `  C ) w ) )  /\  y  e.  B )  ->  (
( 1st `  (
( 1st `  Y
) `  w )
) `  y )  e.  ( Base `  S
) )
150149, 146eleqtrrd 2704 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( z  e.  B  /\  w  e.  B
) )  /\  h  e.  ( z ( Hom  `  C ) w ) )  /\  y  e.  B )  ->  (
( 1st `  (
( 1st `  Y
) `  w )
) `  y )  e.  U )
1515, 139, 136, 147, 150elsetchom 16731 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( z  e.  B  /\  w  e.  B
) )  /\  h  e.  ( z ( Hom  `  C ) w ) )  /\  y  e.  B )  ->  (
( ( ( z ( 2nd `  Y
) w ) `  h ) `  y
)  e.  ( ( ( 1st `  (
( 1st `  Y
) `  z )
) `  y )
( Hom  `  S ) ( ( 1st `  (
( 1st `  Y
) `  w )
) `  y )
)  <->  ( ( ( z ( 2nd `  Y
) w ) `  h ) `  y
) : ( ( 1st `  ( ( 1st `  Y ) `
 z ) ) `
 y ) --> ( ( 1st `  (
( 1st `  Y
) `  w )
) `  y )
) )
152137, 151mpbid 222 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( z  e.  B  /\  w  e.  B
) )  /\  h  e.  ( z ( Hom  `  C ) w ) )  /\  y  e.  B )  ->  (
( ( z ( 2nd `  Y ) w ) `  h
) `  y ) : ( ( 1st `  ( ( 1st `  Y
) `  z )
) `  y ) --> ( ( 1st `  (
( 1st `  Y
) `  w )
) `  y )
)
153152feqmptd 6249 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( z  e.  B  /\  w  e.  B
) )  /\  h  e.  ( z ( Hom  `  C ) w ) )  /\  y  e.  B )  ->  (
( ( z ( 2nd `  Y ) w ) `  h
) `  y )  =  ( g  e.  ( ( 1st `  (
( 1st `  Y
) `  z )
) `  y )  |->  ( ( ( ( z ( 2nd `  Y
) w ) `  h ) `  y
) `  g )
) )
154130, 153eqtr4d 2659 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( z  e.  B  /\  w  e.  B
) )  /\  h  e.  ( z ( Hom  `  C ) w ) )  /\  y  e.  B )  ->  (
g  e.  ( y ( Hom  `  C
) z )  |->  ( ( ( z ( 2nd `  ( ( 1st `  Y ) `
 w ) ) y ) `  g
) `  h )
)  =  ( ( ( z ( 2nd `  Y ) w ) `
 h ) `  y ) )
155154mpteq2dva 4744 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
z  e.  B  /\  w  e.  B )
)  /\  h  e.  ( z ( Hom  `  C ) w ) )  ->  ( y  e.  B  |->  ( g  e.  ( y ( Hom  `  C )
z )  |->  ( ( ( z ( 2nd `  ( ( 1st `  Y
) `  w )
) y ) `  g ) `  h
) ) )  =  ( y  e.  B  |->  ( ( ( z ( 2nd `  Y
) w ) `  h ) `  y
) ) )
15680adantr 481 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
z  e.  B  /\  w  e.  B )
)  /\  h  e.  ( z ( Hom  `  C ) w ) )  ->  V  e.  W )
15781adantr 481 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
z  e.  B  /\  w  e.  B )
)  /\  h  e.  ( z ( Hom  `  C ) w ) )  ->  ran  ( Hom f  `  C )  C_  U
)
15882adantr 481 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
z  e.  B  /\  w  e.  B )
)  /\  h  e.  ( z ( Hom  `  C ) w ) )  ->  ( ran  ( Hom f  `  Q )  u.  U
)  C_  V )
15922adantr 481 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
z  e.  B  /\  w  e.  B )
)  /\  h  e.  ( z ( Hom  `  C ) w ) )  ->  ( ( 1st `  Y ) `  w )  e.  ( O  Func  S )
)
16078eleq2d 2687 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( h  e.  ( ( 1st `  (
( 1st `  Y
) `  w )
) `  z )  <->  h  e.  ( z ( Hom  `  C )
w ) ) )
161160biimpar 502 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
z  e.  B  /\  w  e.  B )
)  /\  h  e.  ( z ( Hom  `  C ) w ) )  ->  h  e.  ( ( 1st `  (
( 1st `  Y
) `  w )
) `  z )
)
1622, 17, 29, 4, 5, 30, 6, 31, 26, 32, 33, 113, 156, 157, 158, 159, 115, 44, 161yonedalem4a 16915 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
z  e.  B  /\  w  e.  B )
)  /\  h  e.  ( z ( Hom  `  C ) w ) )  ->  ( (
( ( 1st `  Y
) `  w ) N z ) `  h )  =  ( y  e.  B  |->  ( g  e.  ( y ( Hom  `  C
) z )  |->  ( ( ( z ( 2nd `  ( ( 1st `  Y ) `
 w ) ) y ) `  g
) `  h )
) ) )
16399, 134, 48natfn 16614 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
z  e.  B  /\  w  e.  B )
)  /\  h  e.  ( z ( Hom  `  C ) w ) )  ->  ( (
z ( 2nd `  Y
) w ) `  h )  Fn  B
)
164 dffn5 6241 . . . . . . . . . . 11  |-  ( ( ( z ( 2nd `  Y ) w ) `
 h )  Fn  B  <->  ( ( z ( 2nd `  Y
) w ) `  h )  =  ( y  e.  B  |->  ( ( ( z ( 2nd `  Y ) w ) `  h
) `  y )
) )
165163, 164sylib 208 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
z  e.  B  /\  w  e.  B )
)  /\  h  e.  ( z ( Hom  `  C ) w ) )  ->  ( (
z ( 2nd `  Y
) w ) `  h )  =  ( y  e.  B  |->  ( ( ( z ( 2nd `  Y ) w ) `  h
) `  y )
) )
166155, 162, 1653eqtr4d 2666 . . . . . . . . 9  |-  ( ( ( ph  /\  (
z  e.  B  /\  w  e.  B )
)  /\  h  e.  ( z ( Hom  `  C ) w ) )  ->  ( (
( ( 1st `  Y
) `  w ) N z ) `  h )  =  ( ( z ( 2nd `  Y ) w ) `
 h ) )
167166mpteq2dva 4744 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( h  e.  ( z ( Hom  `  C
) w )  |->  ( ( ( ( 1st `  Y ) `  w
) N z ) `
 h ) )  =  ( h  e.  ( z ( Hom  `  C ) w ) 
|->  ( ( z ( 2nd `  Y ) w ) `  h
) ) )
168 f1of 6137 . . . . . . . . . 10  |-  ( ( ( ( 1st `  Y
) `  w ) N z ) : ( z ( Hom  `  C ) w ) -1-1-onto-> ( ( ( 1st `  Y
) `  z )
( O Nat  S ) ( ( 1st `  Y
) `  w )
)  ->  ( (
( 1st `  Y
) `  w ) N z ) : ( z ( Hom  `  C ) w ) --> ( ( ( 1st `  Y ) `  z
) ( O Nat  S
) ( ( 1st `  Y ) `  w
) ) )
169112, 168syl 17 . . . . . . . . 9  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( ( ( 1st `  Y ) `  w
) N z ) : ( z ( Hom  `  C )
w ) --> ( ( ( 1st `  Y
) `  z )
( O Nat  S ) ( ( 1st `  Y
) `  w )
) )
170169feqmptd 6249 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( ( ( 1st `  Y ) `  w
) N z )  =  ( h  e.  ( z ( Hom  `  C ) w ) 
|->  ( ( ( ( 1st `  Y ) `
 w ) N z ) `  h
) ) )
171132feqmptd 6249 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( z ( 2nd `  Y ) w )  =  ( h  e.  ( z ( Hom  `  C ) w ) 
|->  ( ( z ( 2nd `  Y ) w ) `  h
) ) )
172167, 170, 1713eqtr4d 2666 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( ( ( 1st `  Y ) `  w
) N z )  =  ( z ( 2nd `  Y ) w ) )
173 f1oeq1 6127 . . . . . . 7  |-  ( ( ( ( 1st `  Y
) `  w ) N z )  =  ( z ( 2nd `  Y ) w )  ->  ( ( ( ( 1st `  Y
) `  w ) N z ) : ( z ( Hom  `  C ) w ) -1-1-onto-> ( ( ( 1st `  Y
) `  z )
( O Nat  S ) ( ( 1st `  Y
) `  w )
)  <->  ( z ( 2nd `  Y ) w ) : ( z ( Hom  `  C
) w ) -1-1-onto-> ( ( ( 1st `  Y
) `  z )
( O Nat  S ) ( ( 1st `  Y
) `  w )
) ) )
174172, 173syl 17 . . . . . 6  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( ( ( ( 1st `  Y ) `
 w ) N z ) : ( z ( Hom  `  C
) w ) -1-1-onto-> ( ( ( 1st `  Y
) `  z )
( O Nat  S ) ( ( 1st `  Y
) `  w )
)  <->  ( z ( 2nd `  Y ) w ) : ( z ( Hom  `  C
) w ) -1-1-onto-> ( ( ( 1st `  Y
) `  z )
( O Nat  S ) ( ( 1st `  Y
) `  w )
) ) )
175112, 174mpbid 222 . . . . 5  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( z ( 2nd `  Y ) w ) : ( z ( Hom  `  C )
w ) -1-1-onto-> ( ( ( 1st `  Y ) `  z
) ( O Nat  S
) ( ( 1st `  Y ) `  w
) ) )
176175ralrimivva 2971 . . . 4  |-  ( ph  ->  A. z  e.  B  A. w  e.  B  ( z ( 2nd `  Y ) w ) : ( z ( Hom  `  C )
w ) -1-1-onto-> ( ( ( 1st `  Y ) `  z
) ( O Nat  S
) ( ( 1st `  Y ) `  w
) ) )
17717, 77, 100isffth2 16576 . . . 4  |-  ( ( 1st `  Y ) ( ( C Full  Q
)  i^i  ( C Faith  Q ) ) ( 2nd `  Y )  <->  ( ( 1st `  Y ) ( C  Func  Q )
( 2nd `  Y
)  /\  A. z  e.  B  A. w  e.  B  ( z
( 2nd `  Y
) w ) : ( z ( Hom  `  C ) w ) -1-1-onto-> ( ( ( 1st `  Y
) `  z )
( O Nat  S ) ( ( 1st `  Y
) `  w )
) ) )
17816, 176, 177sylanbrc 698 . . 3  |-  ( ph  ->  ( 1st `  Y
) ( ( C Full 
Q )  i^i  ( C Faith  Q ) ) ( 2nd `  Y ) )
179 df-br 4654 . . 3  |-  ( ( 1st `  Y ) ( ( C Full  Q
)  i^i  ( C Faith  Q ) ) ( 2nd `  Y )  <->  <. ( 1st `  Y ) ,  ( 2nd `  Y )
>.  e.  ( ( C Full 
Q )  i^i  ( C Faith  Q ) ) )
180178, 179sylib 208 . 2  |-  ( ph  -> 
<. ( 1st `  Y
) ,  ( 2nd `  Y ) >.  e.  ( ( C Full  Q )  i^i  ( C Faith  Q
) ) )
18114, 180eqeltrd 2701 1  |-  ( ph  ->  Y  e.  ( ( C Full  Q )  i^i  ( C Faith  Q ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    u. cun 3572    i^i cin 3573    C_ wss 3574   <.cop 4183   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   ran crn 5115   Rel wrel 5119    Fn wfn 5883   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1stc1st 7166   2ndc2nd 7167  tpos ctpos 7351   Basecbs 15857   Hom chom 15952  compcco 15953   Catccat 16325   Idccid 16326   Hom f chomf 16327  oppCatcoppc 16371  Invcinv 16405    Iso ciso 16406    Func cfunc 16514    o.func ccofu 16516   Full cful 16562   Faith cfth 16563   Nat cnat 16601   FuncCat cfuc 16602   SetCatcsetc 16725    X.c cxpc 16808    1stF c1stf 16809    2ndF c2ndf 16810   ⟨,⟩F cprf 16811   evalF cevlf 16849  HomFchof 16888  Yoncyon 16889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-hom 15966  df-cco 15967  df-cat 16329  df-cid 16330  df-homf 16331  df-comf 16332  df-oppc 16372  df-sect 16407  df-inv 16408  df-iso 16409  df-ssc 16470  df-resc 16471  df-subc 16472  df-func 16518  df-cofu 16520  df-full 16564  df-fth 16565  df-nat 16603  df-fuc 16604  df-setc 16726  df-xpc 16812  df-1stf 16813  df-2ndf 16814  df-prf 16815  df-evlf 16853  df-curf 16854  df-hof 16890  df-yon 16891
This theorem is referenced by:  yonffth  16924
  Copyright terms: Public domain W3C validator