| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gsumval2a | Structured version Visualization version Unicode version | ||
| Description: Value of the group sum operation over a finite set of sequential integers. (Contributed by Mario Carneiro, 7-Dec-2014.) |
| Ref | Expression |
|---|---|
| gsumval2.b |
|
| gsumval2.p |
|
| gsumval2.g |
|
| gsumval2.n |
|
| gsumval2.f |
|
| gsumval2a.o |
|
| gsumval2a.f |
|
| Ref | Expression |
|---|---|
| gsumval2a |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumval2.b |
. . . 4
| |
| 2 | eqid 2622 |
. . . 4
| |
| 3 | gsumval2.p |
. . . 4
| |
| 4 | gsumval2a.o |
. . . 4
| |
| 5 | eqidd 2623 |
. . . 4
| |
| 6 | gsumval2.g |
. . . 4
| |
| 7 | ovexd 6680 |
. . . 4
| |
| 8 | gsumval2.f |
. . . 4
| |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | gsumval 17271 |
. . 3
|
| 10 | gsumval2a.f |
. . . . 5
| |
| 11 | 10 | iffalsed 4097 |
. . . 4
|
| 12 | gsumval2.n |
. . . . . . 7
| |
| 13 | eluzel2 11692 |
. . . . . . 7
| |
| 14 | 12, 13 | syl 17 |
. . . . . 6
|
| 15 | eluzelz 11697 |
. . . . . . 7
| |
| 16 | 12, 15 | syl 17 |
. . . . . 6
|
| 17 | fzf 12330 |
. . . . . . . 8
| |
| 18 | ffn 6045 |
. . . . . . . 8
| |
| 19 | 17, 18 | ax-mp 5 |
. . . . . . 7
|
| 20 | fnovrn 6809 |
. . . . . . 7
| |
| 21 | 19, 20 | mp3an1 1411 |
. . . . . 6
|
| 22 | 14, 16, 21 | syl2anc 693 |
. . . . 5
|
| 23 | 22 | iftrued 4094 |
. . . 4
|
| 24 | 11, 23 | eqtrd 2656 |
. . 3
|
| 25 | 9, 24 | eqtrd 2656 |
. 2
|
| 26 | fvex 6201 |
. . 3
| |
| 27 | fzopth 12378 |
. . . . . . . . . . 11
| |
| 28 | 12, 27 | syl 17 |
. . . . . . . . . 10
|
| 29 | simpl 473 |
. . . . . . . . . . . . . 14
| |
| 30 | 29 | seqeq1d 12807 |
. . . . . . . . . . . . 13
|
| 31 | simpr 477 |
. . . . . . . . . . . . 13
| |
| 32 | 30, 31 | fveq12d 6197 |
. . . . . . . . . . . 12
|
| 33 | 32 | eqcomd 2628 |
. . . . . . . . . . 11
|
| 34 | eqeq1 2626 |
. . . . . . . . . . 11
| |
| 35 | 33, 34 | syl5ibrcom 237 |
. . . . . . . . . 10
|
| 36 | 28, 35 | syl6bi 243 |
. . . . . . . . 9
|
| 37 | 36 | impd 447 |
. . . . . . . 8
|
| 38 | 37 | rexlimdvw 3034 |
. . . . . . 7
|
| 39 | 38 | exlimdv 1861 |
. . . . . 6
|
| 40 | 14 | adantr 481 |
. . . . . . . 8
|
| 41 | oveq2 6658 |
. . . . . . . . . . . . 13
| |
| 42 | 41 | eqcomd 2628 |
. . . . . . . . . . . 12
|
| 43 | 42 | biantrurd 529 |
. . . . . . . . . . 11
|
| 44 | fveq2 6191 |
. . . . . . . . . . . 12
| |
| 45 | 44 | eqeq2d 2632 |
. . . . . . . . . . 11
|
| 46 | 43, 45 | bitr3d 270 |
. . . . . . . . . 10
|
| 47 | 46 | rspcev 3309 |
. . . . . . . . 9
|
| 48 | 12, 47 | sylan 488 |
. . . . . . . 8
|
| 49 | fveq2 6191 |
. . . . . . . . . 10
| |
| 50 | oveq1 6657 |
. . . . . . . . . . . 12
| |
| 51 | 50 | eqeq2d 2632 |
. . . . . . . . . . 11
|
| 52 | seqeq1 12804 |
. . . . . . . . . . . . 13
| |
| 53 | 52 | fveq1d 6193 |
. . . . . . . . . . . 12
|
| 54 | 53 | eqeq2d 2632 |
. . . . . . . . . . 11
|
| 55 | 51, 54 | anbi12d 747 |
. . . . . . . . . 10
|
| 56 | 49, 55 | rexeqbidv 3153 |
. . . . . . . . 9
|
| 57 | 56 | spcegv 3294 |
. . . . . . . 8
|
| 58 | 40, 48, 57 | sylc 65 |
. . . . . . 7
|
| 59 | 58 | ex 450 |
. . . . . 6
|
| 60 | 39, 59 | impbid 202 |
. . . . 5
|
| 61 | 60 | adantr 481 |
. . . 4
|
| 62 | 61 | iota5 5871 |
. . 3
|
| 63 | 26, 62 | mpan2 707 |
. 2
|
| 64 | 25, 63 | eqtrd 2656 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-pre-lttri 10010 ax-pre-lttrn 10011 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-neg 10269 df-z 11378 df-uz 11688 df-fz 12327 df-seq 12802 df-gsum 16103 |
| This theorem is referenced by: gsumval2 17280 |
| Copyright terms: Public domain | W3C validator |