MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumval2a Structured version   Visualization version   Unicode version

Theorem gsumval2a 17279
Description: Value of the group sum operation over a finite set of sequential integers. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypotheses
Ref Expression
gsumval2.b  |-  B  =  ( Base `  G
)
gsumval2.p  |-  .+  =  ( +g  `  G )
gsumval2.g  |-  ( ph  ->  G  e.  V )
gsumval2.n  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
gsumval2.f  |-  ( ph  ->  F : ( M ... N ) --> B )
gsumval2a.o  |-  O  =  { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) }
gsumval2a.f  |-  ( ph  ->  -.  ran  F  C_  O )
Assertion
Ref Expression
gsumval2a  |-  ( ph  ->  ( G  gsumg  F )  =  (  seq M (  .+  ,  F ) `  N
) )
Distinct variable groups:    x, y, B    x, G, y    x, V    x,  .+ , y
Allowed substitution hints:    ph( x, y)    F( x, y)    M( x, y)    N( x, y)    O( x, y)    V( y)

Proof of Theorem gsumval2a
Dummy variables  z 
f  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumval2.b . . . 4  |-  B  =  ( Base `  G
)
2 eqid 2622 . . . 4  |-  ( 0g
`  G )  =  ( 0g `  G
)
3 gsumval2.p . . . 4  |-  .+  =  ( +g  `  G )
4 gsumval2a.o . . . 4  |-  O  =  { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) }
5 eqidd 2623 . . . 4  |-  ( ph  ->  ( `' F "
( _V  \  O
) )  =  ( `' F " ( _V 
\  O ) ) )
6 gsumval2.g . . . 4  |-  ( ph  ->  G  e.  V )
7 ovexd 6680 . . . 4  |-  ( ph  ->  ( M ... N
)  e.  _V )
8 gsumval2.f . . . 4  |-  ( ph  ->  F : ( M ... N ) --> B )
91, 2, 3, 4, 5, 6, 7, 8gsumval 17271 . . 3  |-  ( ph  ->  ( G  gsumg  F )  =  if ( ran  F  C_  O ,  ( 0g `  G ) ,  if ( ( M ... N )  e.  ran  ...
,  ( iota z E. m E. n  e.  ( ZZ>= `  m )
( ( M ... N )  =  ( m ... n )  /\  z  =  (  seq m (  .+  ,  F ) `  n
) ) ) ,  ( iota z E. f ( f : ( 1 ... ( # `
 ( `' F " ( _V  \  O
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  O ) )  /\  z  =  (  seq 1 (  .+  ,  ( F  o.  f ) ) `  ( # `  ( `' F " ( _V 
\  O ) ) ) ) ) ) ) ) )
10 gsumval2a.f . . . . 5  |-  ( ph  ->  -.  ran  F  C_  O )
1110iffalsed 4097 . . . 4  |-  ( ph  ->  if ( ran  F  C_  O ,  ( 0g
`  G ) ,  if ( ( M ... N )  e. 
ran  ... ,  ( iota z E. m E. n  e.  ( ZZ>= `  m ) ( ( M ... N )  =  ( m ... n )  /\  z  =  (  seq m
(  .+  ,  F
) `  n )
) ) ,  ( iota z E. f
( f : ( 1 ... ( # `  ( `' F "
( _V  \  O
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  O ) )  /\  z  =  (  seq 1 (  .+  ,  ( F  o.  f ) ) `  ( # `  ( `' F " ( _V 
\  O ) ) ) ) ) ) ) )  =  if ( ( M ... N )  e.  ran  ...
,  ( iota z E. m E. n  e.  ( ZZ>= `  m )
( ( M ... N )  =  ( m ... n )  /\  z  =  (  seq m (  .+  ,  F ) `  n
) ) ) ,  ( iota z E. f ( f : ( 1 ... ( # `
 ( `' F " ( _V  \  O
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  O ) )  /\  z  =  (  seq 1 (  .+  ,  ( F  o.  f ) ) `  ( # `  ( `' F " ( _V 
\  O ) ) ) ) ) ) ) )
12 gsumval2.n . . . . . . 7  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
13 eluzel2 11692 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
1412, 13syl 17 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
15 eluzelz 11697 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
1612, 15syl 17 . . . . . 6  |-  ( ph  ->  N  e.  ZZ )
17 fzf 12330 . . . . . . . 8  |-  ... :
( ZZ  X.  ZZ )
--> ~P ZZ
18 ffn 6045 . . . . . . . 8  |-  ( ...
: ( ZZ  X.  ZZ ) --> ~P ZZ  ->  ... 
Fn  ( ZZ  X.  ZZ ) )
1917, 18ax-mp 5 . . . . . . 7  |-  ...  Fn  ( ZZ  X.  ZZ )
20 fnovrn 6809 . . . . . . 7  |-  ( ( ...  Fn  ( ZZ 
X.  ZZ )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M ... N )  e. 
ran  ... )
2119, 20mp3an1 1411 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M ... N
)  e.  ran  ... )
2214, 16, 21syl2anc 693 . . . . 5  |-  ( ph  ->  ( M ... N
)  e.  ran  ... )
2322iftrued 4094 . . . 4  |-  ( ph  ->  if ( ( M ... N )  e. 
ran  ... ,  ( iota z E. m E. n  e.  ( ZZ>= `  m ) ( ( M ... N )  =  ( m ... n )  /\  z  =  (  seq m
(  .+  ,  F
) `  n )
) ) ,  ( iota z E. f
( f : ( 1 ... ( # `  ( `' F "
( _V  \  O
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  O ) )  /\  z  =  (  seq 1 (  .+  ,  ( F  o.  f ) ) `  ( # `  ( `' F " ( _V 
\  O ) ) ) ) ) ) )  =  ( iota z E. m E. n  e.  ( ZZ>= `  m ) ( ( M ... N )  =  ( m ... n )  /\  z  =  (  seq m
(  .+  ,  F
) `  n )
) ) )
2411, 23eqtrd 2656 . . 3  |-  ( ph  ->  if ( ran  F  C_  O ,  ( 0g
`  G ) ,  if ( ( M ... N )  e. 
ran  ... ,  ( iota z E. m E. n  e.  ( ZZ>= `  m ) ( ( M ... N )  =  ( m ... n )  /\  z  =  (  seq m
(  .+  ,  F
) `  n )
) ) ,  ( iota z E. f
( f : ( 1 ... ( # `  ( `' F "
( _V  \  O
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  O ) )  /\  z  =  (  seq 1 (  .+  ,  ( F  o.  f ) ) `  ( # `  ( `' F " ( _V 
\  O ) ) ) ) ) ) ) )  =  ( iota z E. m E. n  e.  ( ZZ>=
`  m ) ( ( M ... N
)  =  ( m ... n )  /\  z  =  (  seq m (  .+  ,  F ) `  n
) ) ) )
259, 24eqtrd 2656 . 2  |-  ( ph  ->  ( G  gsumg  F )  =  ( iota z E. m E. n  e.  ( ZZ>=
`  m ) ( ( M ... N
)  =  ( m ... n )  /\  z  =  (  seq m (  .+  ,  F ) `  n
) ) ) )
26 fvex 6201 . . 3  |-  (  seq M (  .+  ,  F ) `  N
)  e.  _V
27 fzopth 12378 . . . . . . . . . . 11  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ( M ... N )  =  ( m ... n
)  <->  ( M  =  m  /\  N  =  n ) ) )
2812, 27syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( ( M ... N )  =  ( m ... n )  <-> 
( M  =  m  /\  N  =  n ) ) )
29 simpl 473 . . . . . . . . . . . . . 14  |-  ( ( M  =  m  /\  N  =  n )  ->  M  =  m )
3029seqeq1d 12807 . . . . . . . . . . . . 13  |-  ( ( M  =  m  /\  N  =  n )  ->  seq M (  .+  ,  F )  =  seq m (  .+  ,  F ) )
31 simpr 477 . . . . . . . . . . . . 13  |-  ( ( M  =  m  /\  N  =  n )  ->  N  =  n )
3230, 31fveq12d 6197 . . . . . . . . . . . 12  |-  ( ( M  =  m  /\  N  =  n )  ->  (  seq M ( 
.+  ,  F ) `
 N )  =  (  seq m ( 
.+  ,  F ) `
 n ) )
3332eqcomd 2628 . . . . . . . . . . 11  |-  ( ( M  =  m  /\  N  =  n )  ->  (  seq m ( 
.+  ,  F ) `
 n )  =  (  seq M ( 
.+  ,  F ) `
 N ) )
34 eqeq1 2626 . . . . . . . . . . 11  |-  ( z  =  (  seq m
(  .+  ,  F
) `  n )  ->  ( z  =  (  seq M (  .+  ,  F ) `  N
)  <->  (  seq m
(  .+  ,  F
) `  n )  =  (  seq M ( 
.+  ,  F ) `
 N ) ) )
3533, 34syl5ibrcom 237 . . . . . . . . . 10  |-  ( ( M  =  m  /\  N  =  n )  ->  ( z  =  (  seq m (  .+  ,  F ) `  n
)  ->  z  =  (  seq M (  .+  ,  F ) `  N
) ) )
3628, 35syl6bi 243 . . . . . . . . 9  |-  ( ph  ->  ( ( M ... N )  =  ( m ... n )  ->  ( z  =  (  seq m ( 
.+  ,  F ) `
 n )  -> 
z  =  (  seq M (  .+  ,  F ) `  N
) ) ) )
3736impd 447 . . . . . . . 8  |-  ( ph  ->  ( ( ( M ... N )  =  ( m ... n
)  /\  z  =  (  seq m (  .+  ,  F ) `  n
) )  ->  z  =  (  seq M ( 
.+  ,  F ) `
 N ) ) )
3837rexlimdvw 3034 . . . . . . 7  |-  ( ph  ->  ( E. n  e.  ( ZZ>= `  m )
( ( M ... N )  =  ( m ... n )  /\  z  =  (  seq m (  .+  ,  F ) `  n
) )  ->  z  =  (  seq M ( 
.+  ,  F ) `
 N ) ) )
3938exlimdv 1861 . . . . . 6  |-  ( ph  ->  ( E. m E. n  e.  ( ZZ>= `  m ) ( ( M ... N )  =  ( m ... n )  /\  z  =  (  seq m
(  .+  ,  F
) `  n )
)  ->  z  =  (  seq M (  .+  ,  F ) `  N
) ) )
4014adantr 481 . . . . . . . 8  |-  ( (
ph  /\  z  =  (  seq M (  .+  ,  F ) `  N
) )  ->  M  e.  ZZ )
41 oveq2 6658 . . . . . . . . . . . . 13  |-  ( n  =  N  ->  ( M ... n )  =  ( M ... N
) )
4241eqcomd 2628 . . . . . . . . . . . 12  |-  ( n  =  N  ->  ( M ... N )  =  ( M ... n
) )
4342biantrurd 529 . . . . . . . . . . 11  |-  ( n  =  N  ->  (
z  =  (  seq M (  .+  ,  F ) `  n
)  <->  ( ( M ... N )  =  ( M ... n
)  /\  z  =  (  seq M (  .+  ,  F ) `  n
) ) ) )
44 fveq2 6191 . . . . . . . . . . . 12  |-  ( n  =  N  ->  (  seq M (  .+  ,  F ) `  n
)  =  (  seq M (  .+  ,  F ) `  N
) )
4544eqeq2d 2632 . . . . . . . . . . 11  |-  ( n  =  N  ->  (
z  =  (  seq M (  .+  ,  F ) `  n
)  <->  z  =  (  seq M (  .+  ,  F ) `  N
) ) )
4643, 45bitr3d 270 . . . . . . . . . 10  |-  ( n  =  N  ->  (
( ( M ... N )  =  ( M ... n )  /\  z  =  (  seq M (  .+  ,  F ) `  n
) )  <->  z  =  (  seq M (  .+  ,  F ) `  N
) ) )
4746rspcev 3309 . . . . . . . . 9  |-  ( ( N  e.  ( ZZ>= `  M )  /\  z  =  (  seq M ( 
.+  ,  F ) `
 N ) )  ->  E. n  e.  (
ZZ>= `  M ) ( ( M ... N
)  =  ( M ... n )  /\  z  =  (  seq M (  .+  ,  F ) `  n
) ) )
4812, 47sylan 488 . . . . . . . 8  |-  ( (
ph  /\  z  =  (  seq M (  .+  ,  F ) `  N
) )  ->  E. n  e.  ( ZZ>= `  M )
( ( M ... N )  =  ( M ... n )  /\  z  =  (  seq M (  .+  ,  F ) `  n
) ) )
49 fveq2 6191 . . . . . . . . . 10  |-  ( m  =  M  ->  ( ZZ>=
`  m )  =  ( ZZ>= `  M )
)
50 oveq1 6657 . . . . . . . . . . . 12  |-  ( m  =  M  ->  (
m ... n )  =  ( M ... n
) )
5150eqeq2d 2632 . . . . . . . . . . 11  |-  ( m  =  M  ->  (
( M ... N
)  =  ( m ... n )  <->  ( M ... N )  =  ( M ... n ) ) )
52 seqeq1 12804 . . . . . . . . . . . . 13  |-  ( m  =  M  ->  seq m (  .+  ,  F )  =  seq M (  .+  ,  F ) )
5352fveq1d 6193 . . . . . . . . . . . 12  |-  ( m  =  M  ->  (  seq m (  .+  ,  F ) `  n
)  =  (  seq M (  .+  ,  F ) `  n
) )
5453eqeq2d 2632 . . . . . . . . . . 11  |-  ( m  =  M  ->  (
z  =  (  seq m (  .+  ,  F ) `  n
)  <->  z  =  (  seq M (  .+  ,  F ) `  n
) ) )
5551, 54anbi12d 747 . . . . . . . . . 10  |-  ( m  =  M  ->  (
( ( M ... N )  =  ( m ... n )  /\  z  =  (  seq m (  .+  ,  F ) `  n
) )  <->  ( ( M ... N )  =  ( M ... n
)  /\  z  =  (  seq M (  .+  ,  F ) `  n
) ) ) )
5649, 55rexeqbidv 3153 . . . . . . . . 9  |-  ( m  =  M  ->  ( E. n  e.  ( ZZ>=
`  m ) ( ( M ... N
)  =  ( m ... n )  /\  z  =  (  seq m (  .+  ,  F ) `  n
) )  <->  E. n  e.  ( ZZ>= `  M )
( ( M ... N )  =  ( M ... n )  /\  z  =  (  seq M (  .+  ,  F ) `  n
) ) ) )
5756spcegv 3294 . . . . . . . 8  |-  ( M  e.  ZZ  ->  ( E. n  e.  ( ZZ>=
`  M ) ( ( M ... N
)  =  ( M ... n )  /\  z  =  (  seq M (  .+  ,  F ) `  n
) )  ->  E. m E. n  e.  ( ZZ>=
`  m ) ( ( M ... N
)  =  ( m ... n )  /\  z  =  (  seq m (  .+  ,  F ) `  n
) ) ) )
5840, 48, 57sylc 65 . . . . . . 7  |-  ( (
ph  /\  z  =  (  seq M (  .+  ,  F ) `  N
) )  ->  E. m E. n  e.  ( ZZ>=
`  m ) ( ( M ... N
)  =  ( m ... n )  /\  z  =  (  seq m (  .+  ,  F ) `  n
) ) )
5958ex 450 . . . . . 6  |-  ( ph  ->  ( z  =  (  seq M (  .+  ,  F ) `  N
)  ->  E. m E. n  e.  ( ZZ>=
`  m ) ( ( M ... N
)  =  ( m ... n )  /\  z  =  (  seq m (  .+  ,  F ) `  n
) ) ) )
6039, 59impbid 202 . . . . 5  |-  ( ph  ->  ( E. m E. n  e.  ( ZZ>= `  m ) ( ( M ... N )  =  ( m ... n )  /\  z  =  (  seq m
(  .+  ,  F
) `  n )
)  <->  z  =  (  seq M (  .+  ,  F ) `  N
) ) )
6160adantr 481 . . . 4  |-  ( (
ph  /\  (  seq M (  .+  ,  F ) `  N
)  e.  _V )  ->  ( E. m E. n  e.  ( ZZ>= `  m ) ( ( M ... N )  =  ( m ... n )  /\  z  =  (  seq m
(  .+  ,  F
) `  n )
)  <->  z  =  (  seq M (  .+  ,  F ) `  N
) ) )
6261iota5 5871 . . 3  |-  ( (
ph  /\  (  seq M (  .+  ,  F ) `  N
)  e.  _V )  ->  ( iota z E. m E. n  e.  ( ZZ>= `  m )
( ( M ... N )  =  ( m ... n )  /\  z  =  (  seq m (  .+  ,  F ) `  n
) ) )  =  (  seq M ( 
.+  ,  F ) `
 N ) )
6326, 62mpan2 707 . 2  |-  ( ph  ->  ( iota z E. m E. n  e.  ( ZZ>= `  m )
( ( M ... N )  =  ( m ... n )  /\  z  =  (  seq m (  .+  ,  F ) `  n
) ) )  =  (  seq M ( 
.+  ,  F ) `
 N ) )
6425, 63eqtrd 2656 1  |-  ( ph  ->  ( G  gsumg  F )  =  (  seq M (  .+  ,  F ) `  N
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    \ cdif 3571    C_ wss 3574   ifcif 4086   ~Pcpw 4158    X. cxp 5112   `'ccnv 5113   ran crn 5115   "cima 5117    o. ccom 5118   iotacio 5849    Fn wfn 5883   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   1c1 9937   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326    seqcseq 12801   #chash 13117   Basecbs 15857   +g cplusg 15941   0gc0g 16100    gsumg cgsu 16101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-neg 10269  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802  df-gsum 16103
This theorem is referenced by:  gsumval2  17280
  Copyright terms: Public domain W3C validator