MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsdchrval Structured version   Visualization version   Unicode version

Theorem lgsdchrval 25079
Description: The Legendre symbol function  X ( m )  =  ( m  /L N ), where  N is an odd positive number, is a Dirichlet character modulo  N. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
lgsdchr.g  |-  G  =  (DChr `  N )
lgsdchr.z  |-  Z  =  (ℤ/n `  N )
lgsdchr.d  |-  D  =  ( Base `  G
)
lgsdchr.b  |-  B  =  ( Base `  Z
)
lgsdchr.l  |-  L  =  ( ZRHom `  Z
)
lgsdchr.x  |-  X  =  ( y  e.  B  |->  ( iota h E. m  e.  ZZ  (
y  =  ( L `
 m )  /\  h  =  ( m  /L N ) ) ) )
Assertion
Ref Expression
lgsdchrval  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  A  e.  ZZ )  ->  ( X `
 ( L `  A ) )  =  ( A  /L
N ) )
Distinct variable groups:    y, B    h, m, y, L    h, N, m, y    y, X    A, h, m, y    y, Z
Allowed substitution hints:    B( h, m)    D( y, h, m)    G( y, h, m)    X( h, m)    Z( h, m)

Proof of Theorem lgsdchrval
StepHypRef Expression
1 nnnn0 11299 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  NN0 )
21adantr 481 . . . . 5  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  N  e.  NN0 )
3 lgsdchr.z . . . . . 6  |-  Z  =  (ℤ/n `  N )
4 lgsdchr.b . . . . . 6  |-  B  =  ( Base `  Z
)
5 lgsdchr.l . . . . . 6  |-  L  =  ( ZRHom `  Z
)
63, 4, 5znzrhfo 19896 . . . . 5  |-  ( N  e.  NN0  ->  L : ZZ -onto-> B )
7 fof 6115 . . . . 5  |-  ( L : ZZ -onto-> B  ->  L : ZZ --> B )
82, 6, 73syl 18 . . . 4  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  L : ZZ --> B )
98ffvelrnda 6359 . . 3  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  A  e.  ZZ )  ->  ( L `
 A )  e.  B )
10 eqeq1 2626 . . . . . . 7  |-  ( y  =  ( L `  A )  ->  (
y  =  ( L `
 m )  <->  ( L `  A )  =  ( L `  m ) ) )
1110anbi1d 741 . . . . . 6  |-  ( y  =  ( L `  A )  ->  (
( y  =  ( L `  m )  /\  h  =  ( m  /L N ) )  <->  ( ( L `  A )  =  ( L `  m )  /\  h  =  ( m  /L N ) ) ) )
1211rexbidv 3052 . . . . 5  |-  ( y  =  ( L `  A )  ->  ( E. m  e.  ZZ  ( y  =  ( L `  m )  /\  h  =  ( m  /L N ) )  <->  E. m  e.  ZZ  ( ( L `
 A )  =  ( L `  m
)  /\  h  =  ( m  /L N ) ) ) )
1312iotabidv 5872 . . . 4  |-  ( y  =  ( L `  A )  ->  ( iota h E. m  e.  ZZ  ( y  =  ( L `  m
)  /\  h  =  ( m  /L N ) ) )  =  ( iota h E. m  e.  ZZ  (
( L `  A
)  =  ( L `
 m )  /\  h  =  ( m  /L N ) ) ) )
14 lgsdchr.x . . . 4  |-  X  =  ( y  e.  B  |->  ( iota h E. m  e.  ZZ  (
y  =  ( L `
 m )  /\  h  =  ( m  /L N ) ) ) )
15 iotaex 5868 . . . 4  |-  ( iota
h E. m  e.  ZZ  ( y  =  ( L `  m
)  /\  h  =  ( m  /L N ) ) )  e. 
_V
1613, 14, 15fvmpt3i 6287 . . 3  |-  ( ( L `  A )  e.  B  ->  ( X `  ( L `  A ) )  =  ( iota h E. m  e.  ZZ  (
( L `  A
)  =  ( L `
 m )  /\  h  =  ( m  /L N ) ) ) )
179, 16syl 17 . 2  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  A  e.  ZZ )  ->  ( X `
 ( L `  A ) )  =  ( iota h E. m  e.  ZZ  (
( L `  A
)  =  ( L `
 m )  /\  h  =  ( m  /L N ) ) ) )
18 ovex 6678 . . 3  |-  ( A  /L N )  e.  _V
19 simprr 796 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  -.  2  ||  N )  /\  A  e.  ZZ )  /\  (
m  e.  ZZ  /\  ( L `  A )  =  ( L `  m ) ) )  ->  ( L `  A )  =  ( L `  m ) )
20 simplll 798 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N  e.  NN  /\  -.  2  ||  N )  /\  A  e.  ZZ )  /\  (
m  e.  ZZ  /\  ( L `  A )  =  ( L `  m ) ) )  ->  N  e.  NN )
2120, 1syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  NN  /\  -.  2  ||  N )  /\  A  e.  ZZ )  /\  (
m  e.  ZZ  /\  ( L `  A )  =  ( L `  m ) ) )  ->  N  e.  NN0 )
22 simplr 792 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  NN  /\  -.  2  ||  N )  /\  A  e.  ZZ )  /\  (
m  e.  ZZ  /\  ( L `  A )  =  ( L `  m ) ) )  ->  A  e.  ZZ )
23 simprl 794 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  NN  /\  -.  2  ||  N )  /\  A  e.  ZZ )  /\  (
m  e.  ZZ  /\  ( L `  A )  =  ( L `  m ) ) )  ->  m  e.  ZZ )
243, 5zndvds 19898 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN0  /\  A  e.  ZZ  /\  m  e.  ZZ )  ->  (
( L `  A
)  =  ( L `
 m )  <->  N  ||  ( A  -  m )
) )
2521, 22, 23, 24syl3anc 1326 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  -.  2  ||  N )  /\  A  e.  ZZ )  /\  (
m  e.  ZZ  /\  ( L `  A )  =  ( L `  m ) ) )  ->  ( ( L `
 A )  =  ( L `  m
)  <->  N  ||  ( A  -  m ) ) )
2619, 25mpbid 222 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  -.  2  ||  N )  /\  A  e.  ZZ )  /\  (
m  e.  ZZ  /\  ( L `  A )  =  ( L `  m ) ) )  ->  N  ||  ( A  -  m )
)
27 moddvds 14991 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  m  e.  ZZ )  ->  (
( A  mod  N
)  =  ( m  mod  N )  <->  N  ||  ( A  -  m )
) )
2820, 22, 23, 27syl3anc 1326 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  -.  2  ||  N )  /\  A  e.  ZZ )  /\  (
m  e.  ZZ  /\  ( L `  A )  =  ( L `  m ) ) )  ->  ( ( A  mod  N )  =  ( m  mod  N
)  <->  N  ||  ( A  -  m ) ) )
2926, 28mpbird 247 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  -.  2  ||  N )  /\  A  e.  ZZ )  /\  (
m  e.  ZZ  /\  ( L `  A )  =  ( L `  m ) ) )  ->  ( A  mod  N )  =  ( m  mod  N ) )
3029oveq1d 6665 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  -.  2  ||  N )  /\  A  e.  ZZ )  /\  (
m  e.  ZZ  /\  ( L `  A )  =  ( L `  m ) ) )  ->  ( ( A  mod  N )  /L N )  =  ( ( m  mod  N )  /L N ) )
31 simpllr 799 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  -.  2  ||  N )  /\  A  e.  ZZ )  /\  (
m  e.  ZZ  /\  ( L `  A )  =  ( L `  m ) ) )  ->  -.  2  ||  N )
32 lgsmod 25048 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  -> 
( ( A  mod  N )  /L N )  =  ( A  /L N ) )
3322, 20, 31, 32syl3anc 1326 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  -.  2  ||  N )  /\  A  e.  ZZ )  /\  (
m  e.  ZZ  /\  ( L `  A )  =  ( L `  m ) ) )  ->  ( ( A  mod  N )  /L N )  =  ( A  /L
N ) )
34 lgsmod 25048 . . . . . . . . . . . . 13  |-  ( ( m  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  -> 
( ( m  mod  N )  /L N )  =  ( m  /L N ) )
3523, 20, 31, 34syl3anc 1326 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  -.  2  ||  N )  /\  A  e.  ZZ )  /\  (
m  e.  ZZ  /\  ( L `  A )  =  ( L `  m ) ) )  ->  ( ( m  mod  N )  /L N )  =  ( m  /L
N ) )
3630, 33, 353eqtr3d 2664 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  -.  2  ||  N )  /\  A  e.  ZZ )  /\  (
m  e.  ZZ  /\  ( L `  A )  =  ( L `  m ) ) )  ->  ( A  /L N )  =  ( m  /L
N ) )
3736eqeq2d 2632 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  -.  2  ||  N )  /\  A  e.  ZZ )  /\  (
m  e.  ZZ  /\  ( L `  A )  =  ( L `  m ) ) )  ->  ( h  =  ( A  /L
N )  <->  h  =  ( m  /L N ) ) )
3837biimprd 238 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  -.  2  ||  N )  /\  A  e.  ZZ )  /\  (
m  e.  ZZ  /\  ( L `  A )  =  ( L `  m ) ) )  ->  ( h  =  ( m  /L
N )  ->  h  =  ( A  /L N ) ) )
3938anassrs 680 . . . . . . . 8  |-  ( ( ( ( ( N  e.  NN  /\  -.  2  ||  N )  /\  A  e.  ZZ )  /\  m  e.  ZZ )  /\  ( L `  A )  =  ( L `  m ) )  ->  ( h  =  ( m  /L N )  ->  h  =  ( A  /L N ) ) )
4039expimpd 629 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  -.  2  ||  N )  /\  A  e.  ZZ )  /\  m  e.  ZZ )  ->  (
( ( L `  A )  =  ( L `  m )  /\  h  =  ( m  /L N ) )  ->  h  =  ( A  /L N ) ) )
4140rexlimdva 3031 . . . . . 6  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  A  e.  ZZ )  ->  ( E. m  e.  ZZ  (
( L `  A
)  =  ( L `
 m )  /\  h  =  ( m  /L N ) )  ->  h  =  ( A  /L N ) ) )
42 fveq2 6191 . . . . . . . . . . . 12  |-  ( m  =  A  ->  ( L `  m )  =  ( L `  A ) )
4342eqcomd 2628 . . . . . . . . . . 11  |-  ( m  =  A  ->  ( L `  A )  =  ( L `  m ) )
4443biantrurd 529 . . . . . . . . . 10  |-  ( m  =  A  ->  (
h  =  ( m  /L N )  <-> 
( ( L `  A )  =  ( L `  m )  /\  h  =  ( m  /L N ) ) ) )
45 oveq1 6657 . . . . . . . . . . 11  |-  ( m  =  A  ->  (
m  /L N )  =  ( A  /L N ) )
4645eqeq2d 2632 . . . . . . . . . 10  |-  ( m  =  A  ->  (
h  =  ( m  /L N )  <-> 
h  =  ( A  /L N ) ) )
4744, 46bitr3d 270 . . . . . . . . 9  |-  ( m  =  A  ->  (
( ( L `  A )  =  ( L `  m )  /\  h  =  ( m  /L N ) )  <->  h  =  ( A  /L N ) ) )
4847rspcev 3309 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  h  =  ( A  /L N ) )  ->  E. m  e.  ZZ  ( ( L `  A )  =  ( L `  m )  /\  h  =  ( m  /L N ) ) )
4948ex 450 . . . . . . 7  |-  ( A  e.  ZZ  ->  (
h  =  ( A  /L N )  ->  E. m  e.  ZZ  ( ( L `  A )  =  ( L `  m )  /\  h  =  ( m  /L N ) ) ) )
5049adantl 482 . . . . . 6  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  A  e.  ZZ )  ->  ( h  =  ( A  /L N )  ->  E. m  e.  ZZ  ( ( L `  A )  =  ( L `  m )  /\  h  =  ( m  /L N ) ) ) )
5141, 50impbid 202 . . . . 5  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  A  e.  ZZ )  ->  ( E. m  e.  ZZ  (
( L `  A
)  =  ( L `
 m )  /\  h  =  ( m  /L N ) )  <-> 
h  =  ( A  /L N ) ) )
5251adantr 481 . . . 4  |-  ( ( ( ( N  e.  NN  /\  -.  2  ||  N )  /\  A  e.  ZZ )  /\  ( A  /L N )  e.  _V )  -> 
( E. m  e.  ZZ  ( ( L `
 A )  =  ( L `  m
)  /\  h  =  ( m  /L N ) )  <->  h  =  ( A  /L N ) ) )
5352iota5 5871 . . 3  |-  ( ( ( ( N  e.  NN  /\  -.  2  ||  N )  /\  A  e.  ZZ )  /\  ( A  /L N )  e.  _V )  -> 
( iota h E. m  e.  ZZ  ( ( L `
 A )  =  ( L `  m
)  /\  h  =  ( m  /L N ) ) )  =  ( A  /L
N ) )
5418, 53mpan2 707 . 2  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  A  e.  ZZ )  ->  ( iota
h E. m  e.  ZZ  ( ( L `
 A )  =  ( L `  m
)  /\  h  =  ( m  /L N ) ) )  =  ( A  /L
N ) )
5517, 54eqtrd 2656 1  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  A  e.  ZZ )  ->  ( X `
 ( L `  A ) )  =  ( A  /L
N ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913   _Vcvv 3200   class class class wbr 4653    |-> cmpt 4729   iotacio 5849   -->wf 5884   -onto->wfo 5886   ` cfv 5888  (class class class)co 6650    - cmin 10266   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377    mod cmo 12668    || cdvds 14983   Basecbs 15857   ZRHomczrh 19848  ℤ/nczn 19851  DChrcdchr 24957    /Lclgs 25019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-prm 15386  df-phi 15471  df-pc 15542  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-0g 16102  df-imas 16168  df-qus 16169  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-nsg 17592  df-eqg 17593  df-ghm 17658  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-rnghom 18715  df-subrg 18778  df-lmod 18865  df-lss 18933  df-lsp 18972  df-sra 19172  df-rgmod 19173  df-lidl 19174  df-rsp 19175  df-2idl 19232  df-cnfld 19747  df-zring 19819  df-zrh 19852  df-zn 19855  df-lgs 25020
This theorem is referenced by:  lgsdchr  25080
  Copyright terms: Public domain W3C validator