MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipffn Structured version   Visualization version   Unicode version

Theorem ipffn 19996
Description: The inner product operation is a function. (Contributed by Mario Carneiro, 20-Sep-2015.)
Hypotheses
Ref Expression
ipffn.1  |-  V  =  ( Base `  W
)
ipffn.2  |-  .,  =  ( .if `  W
)
Assertion
Ref Expression
ipffn  |-  .,  Fn  ( V  X.  V
)

Proof of Theorem ipffn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ipffn.1 . . 3  |-  V  =  ( Base `  W
)
2 eqid 2622 . . 3  |-  ( .i
`  W )  =  ( .i `  W
)
3 ipffn.2 . . 3  |-  .,  =  ( .if `  W
)
41, 2, 3ipffval 19993 . 2  |-  .,  =  ( x  e.  V ,  y  e.  V  |->  ( x ( .i
`  W ) y ) )
5 ovex 6678 . 2  |-  ( x ( .i `  W
) y )  e. 
_V
64, 5fnmpt2i 7239 1  |-  .,  Fn  ( V  X.  V
)
Colors of variables: wff setvar class
Syntax hints:    = wceq 1483    X. cxp 5112    Fn wfn 5883   ` cfv 5888  (class class class)co 6650   Basecbs 15857   .icip 15946   .ifcipf 19970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-ipf 19972
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator