![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnmpt2i | Structured version Visualization version Unicode version |
Description: Functionality and domain of a class given by the "maps to" notation. (Contributed by FL, 17-May-2010.) |
Ref | Expression |
---|---|
fmpt2.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
fnmpt2i.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
fnmpt2i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnmpt2i.2 |
. . 3
![]() ![]() ![]() ![]() | |
2 | 1 | rgen2w 2925 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | fmpt2.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 3 | fnmpt2 7238 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 2, 4 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 |
This theorem is referenced by: dmmpt2 7240 fnoa 7588 fnom 7589 fnoe 7590 fnmap 7864 fnpm 7865 cdafn 8991 addpqnq 9760 mulpqnq 9763 elq 11790 cnref1o 11827 ccatfn 13357 qnnen 14942 restfn 16085 prdsdsfn 16125 imasdsfn 16174 imasvscafn 16197 homffn 16353 comfffn 16364 comffn 16365 isoval 16425 cofucl 16548 fnfuc 16605 natffn 16609 catcisolem 16756 estrchomfn 16775 funcestrcsetclem4 16783 funcsetcestrclem4 16798 fnxpc 16816 1stfcl 16837 2ndfcl 16838 prfcl 16843 evlfcl 16862 curf1cl 16868 curfcl 16872 hofcl 16899 yonedalem3 16920 yonedainv 16921 plusffn 17250 mulgfval 17542 mulgfn 17544 gimfn 17703 symgplusg 17809 sylow2blem2 18036 scaffn 18884 lmimfn 19026 mplsubrglem 19439 ipffn 19996 tx1stc 21453 tx2ndc 21454 hmeofn 21560 symgtgp 21905 qustgplem 21924 nmoffn 22515 rrxmfval 23189 mbfimaopnlem 23422 i1fadd 23462 i1fmul 23463 smatrcl 29862 txomap 29901 qtophaus 29903 pstmxmet 29940 dya2icoseg 30339 dya2iocrfn 30341 fncvm 31239 cntotbnd 33595 rnghmfn 41890 rhmfn 41918 rnghmsscmap2 41973 rnghmsscmap 41974 rngchomffvalALTV 41995 rngchomrnghmresALTV 41996 rhmsscmap2 42019 rhmsscmap 42020 funcringcsetcALTV2lem4 42039 funcringcsetclem4ALTV 42062 srhmsubc 42076 fldc 42083 fldhmsubc 42084 rhmsubclem1 42086 srhmsubcALTV 42094 fldcALTV 42101 fldhmsubcALTV 42102 rhmsubcALTVlem1 42104 |
Copyright terms: Public domain | W3C validator |