| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isirred2 | Structured version Visualization version Unicode version | ||
| Description: Expand out the class difference from isirred 18699. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| Ref | Expression |
|---|---|
| isirred2.1 |
|
| isirred2.2 |
|
| isirred2.3 |
|
| isirred2.4 |
|
| Ref | Expression |
|---|---|
| isirred2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif 3584 |
. . 3
| |
| 2 | eldif 3584 |
. . . . . . . . 9
| |
| 3 | eldif 3584 |
. . . . . . . . 9
| |
| 4 | 2, 3 | anbi12i 733 |
. . . . . . . 8
|
| 5 | an4 865 |
. . . . . . . 8
| |
| 6 | 4, 5 | bitri 264 |
. . . . . . 7
|
| 7 | 6 | imbi1i 339 |
. . . . . 6
|
| 8 | impexp 462 |
. . . . . . 7
| |
| 9 | pm4.56 516 |
. . . . . . . . . 10
| |
| 10 | df-ne 2795 |
. . . . . . . . . 10
| |
| 11 | 9, 10 | imbi12i 340 |
. . . . . . . . 9
|
| 12 | con34b 306 |
. . . . . . . . 9
| |
| 13 | 11, 12 | bitr4i 267 |
. . . . . . . 8
|
| 14 | 13 | imbi2i 326 |
. . . . . . 7
|
| 15 | 8, 14 | bitri 264 |
. . . . . 6
|
| 16 | 7, 15 | bitri 264 |
. . . . 5
|
| 17 | 16 | 2albii 1748 |
. . . 4
|
| 18 | r2al 2939 |
. . . 4
| |
| 19 | r2al 2939 |
. . . 4
| |
| 20 | 17, 18, 19 | 3bitr4i 292 |
. . 3
|
| 21 | 1, 20 | anbi12i 733 |
. 2
|
| 22 | isirred2.1 |
. . 3
| |
| 23 | isirred2.2 |
. . 3
| |
| 24 | isirred2.3 |
. . 3
| |
| 25 | eqid 2622 |
. . 3
| |
| 26 | isirred2.4 |
. . 3
| |
| 27 | 22, 23, 24, 25, 26 | isirred 18699 |
. 2
|
| 28 | df-3an 1039 |
. 2
| |
| 29 | 21, 27, 28 | 3bitr4i 292 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-irred 18643 |
| This theorem is referenced by: irredcl 18704 irrednu 18705 irredmul 18709 prmirredlem 19841 |
| Copyright terms: Public domain | W3C validator |