Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isat3 Structured version   Visualization version   Unicode version

Theorem isat3 34594
Description: The predicate "is an atom". (elat2 29199 analog.) (Contributed by NM, 27-Apr-2014.)
Hypotheses
Ref Expression
isat3.b  |-  B  =  ( Base `  K
)
isat3.l  |-  .<_  =  ( le `  K )
isat3.z  |-  .0.  =  ( 0. `  K )
isat3.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
isat3  |-  ( K  e.  AtLat  ->  ( P  e.  A  <->  ( P  e.  B  /\  P  =/= 
.0.  /\  A. x  e.  B  ( x  .<_  P  ->  ( x  =  P  \/  x  =  .0.  ) ) ) ) )
Distinct variable groups:    x, B    x, K    x, P    x,  .0.
Allowed substitution hints:    A( x)    .<_ ( x)

Proof of Theorem isat3
StepHypRef Expression
1 isat3.b . . . 4  |-  B  =  ( Base `  K
)
2 isat3.z . . . 4  |-  .0.  =  ( 0. `  K )
3 eqid 2622 . . . 4  |-  (  <o  `  K )  =  ( 
<o  `  K )
4 isat3.a . . . 4  |-  A  =  ( Atoms `  K )
51, 2, 3, 4isat 34573 . . 3  |-  ( K  e.  AtLat  ->  ( P  e.  A  <->  ( P  e.  B  /\  .0.  (  <o  `  K ) P ) ) )
6 simpl 473 . . . . . 6  |-  ( ( K  e.  AtLat  /\  P  e.  B )  ->  K  e.  AtLat )
71, 2atl0cl 34590 . . . . . . 7  |-  ( K  e.  AtLat  ->  .0.  e.  B )
87adantr 481 . . . . . 6  |-  ( ( K  e.  AtLat  /\  P  e.  B )  ->  .0.  e.  B )
9 simpr 477 . . . . . 6  |-  ( ( K  e.  AtLat  /\  P  e.  B )  ->  P  e.  B )
10 isat3.l . . . . . . 7  |-  .<_  =  ( le `  K )
11 eqid 2622 . . . . . . 7  |-  ( lt
`  K )  =  ( lt `  K
)
121, 10, 11, 3cvrval2 34561 . . . . . 6  |-  ( ( K  e.  AtLat  /\  .0.  e.  B  /\  P  e.  B )  ->  (  .0.  (  <o  `  K
) P  <->  (  .0.  ( lt `  K ) P  /\  A. x  e.  B  ( (  .0.  ( lt `  K
) x  /\  x  .<_  P )  ->  x  =  P ) ) ) )
136, 8, 9, 12syl3anc 1326 . . . . 5  |-  ( ( K  e.  AtLat  /\  P  e.  B )  ->  (  .0.  (  <o  `  K
) P  <->  (  .0.  ( lt `  K ) P  /\  A. x  e.  B  ( (  .0.  ( lt `  K
) x  /\  x  .<_  P )  ->  x  =  P ) ) ) )
141, 11, 2atlltn0 34593 . . . . . 6  |-  ( ( K  e.  AtLat  /\  P  e.  B )  ->  (  .0.  ( lt `  K
) P  <->  P  =/=  .0.  ) )
151, 11, 2atlltn0 34593 . . . . . . . . . . 11  |-  ( ( K  e.  AtLat  /\  x  e.  B )  ->  (  .0.  ( lt `  K
) x  <->  x  =/=  .0.  ) )
1615adantlr 751 . . . . . . . . . 10  |-  ( ( ( K  e.  AtLat  /\  P  e.  B )  /\  x  e.  B
)  ->  (  .0.  ( lt `  K ) x  <->  x  =/=  .0.  ) )
1716imbi1d 331 . . . . . . . . 9  |-  ( ( ( K  e.  AtLat  /\  P  e.  B )  /\  x  e.  B
)  ->  ( (  .0.  ( lt `  K
) x  ->  x  =  P )  <->  ( x  =/=  .0.  ->  x  =  P ) ) )
1817imbi2d 330 . . . . . . . 8  |-  ( ( ( K  e.  AtLat  /\  P  e.  B )  /\  x  e.  B
)  ->  ( (
x  .<_  P  ->  (  .0.  ( lt `  K
) x  ->  x  =  P ) )  <->  ( x  .<_  P  ->  ( x  =/=  .0.  ->  x  =  P ) ) ) )
19 impexp 462 . . . . . . . . 9  |-  ( ( (  .0.  ( lt
`  K ) x  /\  x  .<_  P )  ->  x  =  P )  <->  (  .0.  ( lt `  K ) x  ->  ( x  .<_  P  ->  x  =  P ) ) )
20 bi2.04 376 . . . . . . . . 9  |-  ( (  .0.  ( lt `  K ) x  -> 
( x  .<_  P  ->  x  =  P )
)  <->  ( x  .<_  P  ->  (  .0.  ( lt `  K ) x  ->  x  =  P ) ) )
2119, 20bitri 264 . . . . . . . 8  |-  ( ( (  .0.  ( lt
`  K ) x  /\  x  .<_  P )  ->  x  =  P )  <->  ( x  .<_  P  ->  (  .0.  ( lt `  K ) x  ->  x  =  P ) ) )
22 orcom 402 . . . . . . . . . 10  |-  ( ( x  =  P  \/  x  =  .0.  )  <->  ( x  =  .0.  \/  x  =  P )
)
23 neor 2885 . . . . . . . . . 10  |-  ( ( x  =  .0.  \/  x  =  P )  <->  ( x  =/=  .0.  ->  x  =  P ) )
2422, 23bitri 264 . . . . . . . . 9  |-  ( ( x  =  P  \/  x  =  .0.  )  <->  ( x  =/=  .0.  ->  x  =  P ) )
2524imbi2i 326 . . . . . . . 8  |-  ( ( x  .<_  P  ->  ( x  =  P  \/  x  =  .0.  )
)  <->  ( x  .<_  P  ->  ( x  =/= 
.0.  ->  x  =  P ) ) )
2618, 21, 253bitr4g 303 . . . . . . 7  |-  ( ( ( K  e.  AtLat  /\  P  e.  B )  /\  x  e.  B
)  ->  ( (
(  .0.  ( lt
`  K ) x  /\  x  .<_  P )  ->  x  =  P )  <->  ( x  .<_  P  ->  ( x  =  P  \/  x  =  .0.  ) ) ) )
2726ralbidva 2985 . . . . . 6  |-  ( ( K  e.  AtLat  /\  P  e.  B )  ->  ( A. x  e.  B  ( (  .0.  ( lt `  K ) x  /\  x  .<_  P )  ->  x  =  P )  <->  A. x  e.  B  ( x  .<_  P  -> 
( x  =  P  \/  x  =  .0.  ) ) ) )
2814, 27anbi12d 747 . . . . 5  |-  ( ( K  e.  AtLat  /\  P  e.  B )  ->  (
(  .0.  ( lt
`  K ) P  /\  A. x  e.  B  ( (  .0.  ( lt `  K
) x  /\  x  .<_  P )  ->  x  =  P ) )  <->  ( P  =/=  .0.  /\  A. x  e.  B  ( x  .<_  P  ->  ( x  =  P  \/  x  =  .0.  ) ) ) ) )
2913, 28bitr2d 269 . . . 4  |-  ( ( K  e.  AtLat  /\  P  e.  B )  ->  (
( P  =/=  .0.  /\ 
A. x  e.  B  ( x  .<_  P  -> 
( x  =  P  \/  x  =  .0.  ) ) )  <->  .0.  (  <o  `  K ) P ) )
3029pm5.32da 673 . . 3  |-  ( K  e.  AtLat  ->  ( ( P  e.  B  /\  ( P  =/=  .0.  /\ 
A. x  e.  B  ( x  .<_  P  -> 
( x  =  P  \/  x  =  .0.  ) ) ) )  <-> 
( P  e.  B  /\  .0.  (  <o  `  K
) P ) ) )
315, 30bitr4d 271 . 2  |-  ( K  e.  AtLat  ->  ( P  e.  A  <->  ( P  e.  B  /\  ( P  =/=  .0.  /\  A. x  e.  B  (
x  .<_  P  ->  (
x  =  P  \/  x  =  .0.  )
) ) ) ) )
32 3anass 1042 . 2  |-  ( ( P  e.  B  /\  P  =/=  .0.  /\  A. x  e.  B  (
x  .<_  P  ->  (
x  =  P  \/  x  =  .0.  )
) )  <->  ( P  e.  B  /\  ( P  =/=  .0.  /\  A. x  e.  B  (
x  .<_  P  ->  (
x  =  P  \/  x  =  .0.  )
) ) ) )
3331, 32syl6bbr 278 1  |-  ( K  e.  AtLat  ->  ( P  e.  A  <->  ( P  e.  B  /\  P  =/= 
.0.  /\  A. x  e.  B  ( x  .<_  P  ->  ( x  =  P  \/  x  =  .0.  ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   class class class wbr 4653   ` cfv 5888   Basecbs 15857   lecple 15948   ltcplt 16941   0.cp0 17037    <o ccvr 34549   Atomscatm 34550   AtLatcal 34551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-plt 16958  df-glb 16975  df-p0 17039  df-covers 34553  df-ats 34554  df-atl 34585
This theorem is referenced by:  atn0  34595  dihlspsnat  36622
  Copyright terms: Public domain W3C validator