| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iscgrg | Structured version Visualization version Unicode version | ||
| Description: The congruence property for sequences of points. (Contributed by Thierry Arnoux, 3-Apr-2019.) |
| Ref | Expression |
|---|---|
| iscgrg.p |
|
| iscgrg.m |
|
| iscgrg.e |
|
| Ref | Expression |
|---|---|
| iscgrg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscgrg.e |
. . . 4
| |
| 2 | elex 3212 |
. . . . 5
| |
| 3 | fveq2 6191 |
. . . . . . . . . . . 12
| |
| 4 | iscgrg.p |
. . . . . . . . . . . 12
| |
| 5 | 3, 4 | syl6eqr 2674 |
. . . . . . . . . . 11
|
| 6 | 5 | oveq1d 6665 |
. . . . . . . . . 10
|
| 7 | 6 | eleq2d 2687 |
. . . . . . . . 9
|
| 8 | 6 | eleq2d 2687 |
. . . . . . . . 9
|
| 9 | 7, 8 | anbi12d 747 |
. . . . . . . 8
|
| 10 | fveq2 6191 |
. . . . . . . . . . . . 13
| |
| 11 | iscgrg.m |
. . . . . . . . . . . . 13
| |
| 12 | 10, 11 | syl6eqr 2674 |
. . . . . . . . . . . 12
|
| 13 | 12 | oveqd 6667 |
. . . . . . . . . . 11
|
| 14 | 12 | oveqd 6667 |
. . . . . . . . . . 11
|
| 15 | 13, 14 | eqeq12d 2637 |
. . . . . . . . . 10
|
| 16 | 15 | 2ralbidv 2989 |
. . . . . . . . 9
|
| 17 | 16 | anbi2d 740 |
. . . . . . . 8
|
| 18 | 9, 17 | anbi12d 747 |
. . . . . . 7
|
| 19 | 18 | opabbidv 4716 |
. . . . . 6
|
| 20 | df-cgrg 25406 |
. . . . . 6
| |
| 21 | df-xp 5120 |
. . . . . . . 8
| |
| 22 | ovex 6678 |
. . . . . . . . 9
| |
| 23 | 22, 22 | xpex 6962 |
. . . . . . . 8
|
| 24 | 21, 23 | eqeltrri 2698 |
. . . . . . 7
|
| 25 | simpl 473 |
. . . . . . . 8
| |
| 26 | 25 | ssopab2i 5003 |
. . . . . . 7
|
| 27 | 24, 26 | ssexi 4803 |
. . . . . 6
|
| 28 | 19, 20, 27 | fvmpt 6282 |
. . . . 5
|
| 29 | 2, 28 | syl 17 |
. . . 4
|
| 30 | 1, 29 | syl5eq 2668 |
. . 3
|
| 31 | 30 | breqd 4664 |
. 2
|
| 32 | dmeq 5324 |
. . . . . 6
| |
| 33 | 32 | eqeq1d 2624 |
. . . . 5
|
| 34 | 32 | adantr 481 |
. . . . . . 7
|
| 35 | simpll 790 |
. . . . . . . . . 10
| |
| 36 | 35 | fveq1d 6193 |
. . . . . . . . 9
|
| 37 | 35 | fveq1d 6193 |
. . . . . . . . 9
|
| 38 | 36, 37 | oveq12d 6668 |
. . . . . . . 8
|
| 39 | 38 | eqeq1d 2624 |
. . . . . . 7
|
| 40 | 34, 39 | raleqbidva 3154 |
. . . . . 6
|
| 41 | 32, 40 | raleqbidva 3154 |
. . . . 5
|
| 42 | 33, 41 | anbi12d 747 |
. . . 4
|
| 43 | dmeq 5324 |
. . . . . 6
| |
| 44 | 43 | eqeq2d 2632 |
. . . . 5
|
| 45 | fveq1 6190 |
. . . . . . . 8
| |
| 46 | fveq1 6190 |
. . . . . . . 8
| |
| 47 | 45, 46 | oveq12d 6668 |
. . . . . . 7
|
| 48 | 47 | eqeq2d 2632 |
. . . . . 6
|
| 49 | 48 | 2ralbidv 2989 |
. . . . 5
|
| 50 | 44, 49 | anbi12d 747 |
. . . 4
|
| 51 | 42, 50 | sylan9bb 736 |
. . 3
|
| 52 | eqid 2622 |
. . 3
| |
| 53 | 51, 52 | brab2a 5194 |
. 2
|
| 54 | 31, 53 | syl6bb 276 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-cgrg 25406 |
| This theorem is referenced by: iscgrgd 25408 ercgrg 25412 |
| Copyright terms: Public domain | W3C validator |