MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscgrgd Structured version   Visualization version   Unicode version

Theorem iscgrgd 25408
Description: The property for two sequences  A and  B of points to be congruent. (Contributed by Thierry Arnoux, 3-Apr-2019.)
Hypotheses
Ref Expression
iscgrg.p  |-  P  =  ( Base `  G
)
iscgrg.m  |-  .-  =  ( dist `  G )
iscgrg.e  |-  .~  =  (cgrG `  G )
iscgrgd.g  |-  ( ph  ->  G  e.  V )
iscgrgd.d  |-  ( ph  ->  D  C_  RR )
iscgrgd.a  |-  ( ph  ->  A : D --> P )
iscgrgd.b  |-  ( ph  ->  B : D --> P )
Assertion
Ref Expression
iscgrgd  |-  ( ph  ->  ( A  .~  B  <->  A. i  e.  dom  A A. j  e.  dom  A ( ( A `  i )  .-  ( A `  j )
)  =  ( ( B `  i ) 
.-  ( B `  j ) ) ) )
Distinct variable groups:    i, j, G    A, i, j    B, i, j
Allowed substitution hints:    ph( i, j)    D( i, j)    P( i, j)    .~ ( i, j)    .- ( i,
j)    V( i, j)

Proof of Theorem iscgrgd
StepHypRef Expression
1 iscgrgd.a . . . . 5  |-  ( ph  ->  A : D --> P )
2 iscgrgd.d . . . . 5  |-  ( ph  ->  D  C_  RR )
3 iscgrg.p . . . . . . 7  |-  P  =  ( Base `  G
)
4 fvex 6201 . . . . . . 7  |-  ( Base `  G )  e.  _V
53, 4eqeltri 2697 . . . . . 6  |-  P  e. 
_V
6 reex 10027 . . . . . 6  |-  RR  e.  _V
7 elpm2r 7875 . . . . . 6  |-  ( ( ( P  e.  _V  /\  RR  e.  _V )  /\  ( A : D --> P  /\  D  C_  RR ) )  ->  A  e.  ( P  ^pm  RR ) )
85, 6, 7mpanl12 718 . . . . 5  |-  ( ( A : D --> P  /\  D  C_  RR )  ->  A  e.  ( P  ^pm  RR ) )
91, 2, 8syl2anc 693 . . . 4  |-  ( ph  ->  A  e.  ( P 
^pm  RR ) )
10 iscgrgd.b . . . . 5  |-  ( ph  ->  B : D --> P )
11 elpm2r 7875 . . . . . 6  |-  ( ( ( P  e.  _V  /\  RR  e.  _V )  /\  ( B : D --> P  /\  D  C_  RR ) )  ->  B  e.  ( P  ^pm  RR ) )
125, 6, 11mpanl12 718 . . . . 5  |-  ( ( B : D --> P  /\  D  C_  RR )  ->  B  e.  ( P  ^pm  RR ) )
1310, 2, 12syl2anc 693 . . . 4  |-  ( ph  ->  B  e.  ( P 
^pm  RR ) )
149, 13jca 554 . . 3  |-  ( ph  ->  ( A  e.  ( P  ^pm  RR )  /\  B  e.  ( P  ^pm  RR ) ) )
1514biantrurd 529 . 2  |-  ( ph  ->  ( ( dom  A  =  dom  B  /\  A. i  e.  dom  A A. j  e.  dom  A ( ( A `  i
)  .-  ( A `  j ) )  =  ( ( B `  i )  .-  ( B `  j )
) )  <->  ( ( A  e.  ( P  ^pm  RR )  /\  B  e.  ( P  ^pm  RR ) )  /\  ( dom  A  =  dom  B  /\  A. i  e.  dom  A A. j  e.  dom  A ( ( A `  i )  .-  ( A `  j )
)  =  ( ( B `  i ) 
.-  ( B `  j ) ) ) ) ) )
16 fdm 6051 . . . . 5  |-  ( A : D --> P  ->  dom  A  =  D )
171, 16syl 17 . . . 4  |-  ( ph  ->  dom  A  =  D )
18 fdm 6051 . . . . 5  |-  ( B : D --> P  ->  dom  B  =  D )
1910, 18syl 17 . . . 4  |-  ( ph  ->  dom  B  =  D )
2017, 19eqtr4d 2659 . . 3  |-  ( ph  ->  dom  A  =  dom  B )
2120biantrurd 529 . 2  |-  ( ph  ->  ( A. i  e. 
dom  A A. j  e.  dom  A ( ( A `  i ) 
.-  ( A `  j ) )  =  ( ( B `  i )  .-  ( B `  j )
)  <->  ( dom  A  =  dom  B  /\  A. i  e.  dom  A A. j  e.  dom  A ( ( A `  i
)  .-  ( A `  j ) )  =  ( ( B `  i )  .-  ( B `  j )
) ) ) )
22 iscgrgd.g . . 3  |-  ( ph  ->  G  e.  V )
23 iscgrg.m . . . 4  |-  .-  =  ( dist `  G )
24 iscgrg.e . . . 4  |-  .~  =  (cgrG `  G )
253, 23, 24iscgrg 25407 . . 3  |-  ( G  e.  V  ->  ( A  .~  B  <->  ( ( A  e.  ( P  ^pm  RR )  /\  B  e.  ( P  ^pm  RR ) )  /\  ( dom  A  =  dom  B  /\  A. i  e.  dom  A A. j  e.  dom  A ( ( A `  i )  .-  ( A `  j )
)  =  ( ( B `  i ) 
.-  ( B `  j ) ) ) ) ) )
2622, 25syl 17 . 2  |-  ( ph  ->  ( A  .~  B  <->  ( ( A  e.  ( P  ^pm  RR )  /\  B  e.  ( P  ^pm  RR ) )  /\  ( dom  A  =  dom  B  /\  A. i  e.  dom  A A. j  e.  dom  A ( ( A `  i
)  .-  ( A `  j ) )  =  ( ( B `  i )  .-  ( B `  j )
) ) ) ) )
2715, 21, 263bitr4rd 301 1  |-  ( ph  ->  ( A  .~  B  <->  A. i  e.  dom  A A. j  e.  dom  A ( ( A `  i )  .-  ( A `  j )
)  =  ( ( B `  i ) 
.-  ( B `  j ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    C_ wss 3574   class class class wbr 4653   dom cdm 5114   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^pm cpm 7858   RRcr 9935   Basecbs 15857   distcds 15950  cgrGccgrg 25405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-pm 7860  df-cgrg 25406
This theorem is referenced by:  iscgrglt  25409  trgcgrg  25410  motcgrg  25439
  Copyright terms: Public domain W3C validator