HomeHome Metamath Proof Explorer
Theorem List (p. 255 of 426)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27775)
  Hilbert Space Explorer  Hilbert Space Explorer
(27776-29300)
  Users' Mathboxes  Users' Mathboxes
(29301-42551)
 

Theorem List for Metamath Proof Explorer - 25401-25500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremtgbtwndiff 25401* There is always a  c distinct from  B such that  B lies between  A and  c. Theorem 3.14 of [Schwabhauser] p. 32. The condition "the space is of dimension 1 or more" is written here as  2  <_  (
# `  P ) for simplicity. (Contributed by Thierry Arnoux, 23-Mar-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  2 
 <_  ( # `  P ) )   =>    |-  ( ph  ->  E. c  e.  P  ( B  e.  ( A I c ) 
 /\  B  =/=  c
 ) )
 
Theoremtgdim01 25402 In geometries of dimension lower than 2, all points are colinear. (Contributed by Thierry Arnoux, 27-Aug-2019.)
 |-  P  =  ( Base `  G )   &    |-  I  =  (Itv `  G )   &    |-  ( ph  ->  G  e.  V )   &    |-  ( ph  ->  -.  GDimTarskiG 2 )   &    |-  ( ph  ->  X  e.  P )   &    |-  ( ph  ->  Y  e.  P )   &    |-  ( ph  ->  Z  e.  P )   =>    |-  ( ph  ->  ( Z  e.  ( X I Y )  \/  X  e.  ( Z I Y )  \/  Y  e.  ( X I Z ) ) )
 
15.2.4  Betweenness and Congruence
 
Theoremtgifscgr 25403 Inner five segment congruence. Take two triangles,  A D C and  E H K, with 
B between  A and  C and  F between  E and  K. If the other components of the triangles are congruent, then so are  B D and  F H. Theorem 4.2 of [Schwabhauser] p. 34. (Contributed by Thierry Arnoux, 24-Mar-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  D  e.  P )   &    |-  ( ph  ->  E  e.  P )   &    |-  ( ph  ->  F  e.  P )   &    |-  ( ph  ->  K  e.  P )   &    |-  ( ph  ->  H  e.  P )   &    |-  ( ph  ->  B  e.  ( A I C ) )   &    |-  ( ph  ->  F  e.  ( E I K ) )   &    |-  ( ph  ->  ( A  .-  C )  =  ( E  .-  K )
 )   &    |-  ( ph  ->  ( B  .-  C )  =  ( F  .-  K ) )   &    |-  ( ph  ->  ( A  .-  D )  =  ( E  .-  H ) )   &    |-  ( ph  ->  ( C  .-  D )  =  ( K  .-  H ) )   =>    |-  ( ph  ->  ( B  .-  D )  =  ( F  .-  H ) )
 
Theoremtgcgrsub 25404 Removing identical parts from the end of a line segment preserves congruence. Theorem 4.3 of [Schwabhauser] p. 35. (Contributed by Thierry Arnoux, 3-Apr-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  D  e.  P )   &    |-  ( ph  ->  E  e.  P )   &    |-  ( ph  ->  F  e.  P )   &    |-  ( ph  ->  B  e.  ( A I C ) )   &    |-  ( ph  ->  E  e.  ( D I F ) )   &    |-  ( ph  ->  ( A  .-  C )  =  ( D  .-  F ) )   &    |-  ( ph  ->  ( B  .-  C )  =  ( E  .-  F ) )   =>    |-  ( ph  ->  ( A  .-  B )  =  ( D  .-  E ) )
 
15.2.5  Congruence of a series of points
 
Syntaxccgrg 25405 Declare the constant for the congruence between shapes relation.
 class cgrG
 
Definitiondf-cgrg 25406* Define the relation congruence bewteen shapes. Definition 4.4 of [Schwabhauser] p. 35. Ideally, we would define this for functions of any set, but we will used words (functions over  NN) in most cases. (Contributed by Thierry Arnoux, 3-Apr-2019.)
 |- cgrG  =  ( g  e.  _V  |->  {
 <. a ,  b >.  |  ( ( a  e.  ( ( Base `  g
 )  ^pm  RR )  /\  b  e.  (
 ( Base `  g )  ^pm  RR ) )  /\  ( dom  a  =  dom  b  /\  A. i  e. 
 dom  a A. j  e.  dom  a ( ( a `  i ) ( dist `  g )
 ( a `  j
 ) )  =  ( ( b `  i
 ) ( dist `  g
 ) ( b `  j ) ) ) ) } )
 
Theoremiscgrg 25407* The congruence property for sequences of points. (Contributed by Thierry Arnoux, 3-Apr-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  .~  =  (cgrG `  G )   =>    |-  ( G  e.  V  ->  ( A  .~  B  <->  ( ( A  e.  ( P  ^pm  RR )  /\  B  e.  ( P  ^pm  RR )
 )  /\  ( dom  A  =  dom  B  /\  A. i  e.  dom  A A. j  e.  dom  A ( ( A `  i )  .-  ( A `
  j ) )  =  ( ( B `
  i )  .-  ( B `  j ) ) ) ) ) )
 
Theoremiscgrgd 25408* The property for two sequences  A and  B of points to be congruent. (Contributed by Thierry Arnoux, 3-Apr-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  .~  =  (cgrG `  G )   &    |-  ( ph  ->  G  e.  V )   &    |-  ( ph  ->  D  C_ 
 RR )   &    |-  ( ph  ->  A : D --> P )   &    |-  ( ph  ->  B : D
 --> P )   =>    |-  ( ph  ->  ( A  .~  B  <->  A. i  e.  dom  A
 A. j  e.  dom  A ( ( A `  i )  .-  ( A `
  j ) )  =  ( ( B `
  i )  .-  ( B `  j ) ) ) )
 
Theoremiscgrglt 25409* The property for two sequences  A and  B of points to be congruent, where the congruence is only required for indices verifying a less-than relation. (Contributed by Thierry Arnoux, 7-Oct-2020.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  .~  =  (cgrG `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  D  C_  RR )   &    |-  ( ph  ->  A : D --> P )   &    |-  ( ph  ->  B : D --> P )   =>    |-  ( ph  ->  ( A  .~  B  <->  A. i  e.  dom  A
 A. j  e.  dom  A ( i  <  j  ->  ( ( A `  i )  .-  ( A `
  j ) )  =  ( ( B `
  i )  .-  ( B `  j ) ) ) ) )
 
Theoremtrgcgrg 25410 The property for two triangles to be congruent to each other. (Contributed by Thierry Arnoux, 3-Apr-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  .~  =  (cgrG `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  D  e.  P )   &    |-  ( ph  ->  E  e.  P )   &    |-  ( ph  ->  F  e.  P )   =>    |-  ( ph  ->  (
 <" A B C ">  .~  <" D E F ">  <->  ( ( A 
 .-  B )  =  ( D  .-  E )  /\  ( B  .-  C )  =  ( E  .-  F )  /\  ( C  .-  A )  =  ( F  .-  D ) ) ) )
 
Theoremtrgcgr 25411 Triangle congruence. (Contributed by Thierry Arnoux, 27-Apr-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  .~  =  (cgrG `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  D  e.  P )   &    |-  ( ph  ->  E  e.  P )   &    |-  ( ph  ->  F  e.  P )   &    |-  ( ph  ->  ( A  .-  B )  =  ( D  .-  E ) )   &    |-  ( ph  ->  ( B  .-  C )  =  ( E  .-  F )
 )   &    |-  ( ph  ->  ( C  .-  A )  =  ( F  .-  D ) )   =>    |-  ( ph  ->  <" A B C ">  .~  <" D E F "> )
 
Theoremercgrg 25412 The shape congruence relation is an equivalence relation. Statement 4.4 of [Schwabhauser] p. 35. (Contributed by Thierry Arnoux, 9-Apr-2019.)
 |-  P  =  ( Base `  G )   =>    |-  ( G  e. TarskiG  ->  (cgrG `  G )  Er  ( P  ^pm  RR ) )
 
Theoremtgcgrxfr 25413* A line segment can be divided at the same place as a congruent line segment is divided. Theorem 4.5 of [Schwabhauser] p. 35. (Contributed by Thierry Arnoux, 9-Apr-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  .~  =  (cgrG `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  D  e.  P )   &    |-  ( ph  ->  F  e.  P )   &    |-  ( ph  ->  B  e.  ( A I C ) )   &    |-  ( ph  ->  ( A  .-  C )  =  ( D  .-  F ) )   =>    |-  ( ph  ->  E. e  e.  P  ( e  e.  ( D I F )  /\  <" A B C ">  .~  <" D e F "> ) )
 
Theoremcgr3id 25414 Reflexivity law for three-place congruence. (Contributed by Thierry Arnoux, 28-Apr-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  .~  =  (cgrG `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  P )   =>    |-  ( ph  ->  <" A B C ">  .~  <" A B C "> )
 
Theoremcgr3simp1 25415 Deduce segment congruence from a triangle congruence. (Contributed by Thierry Arnoux, 27-Apr-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  .~  =  (cgrG `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  D  e.  P )   &    |-  ( ph  ->  E  e.  P )   &    |-  ( ph  ->  F  e.  P )   &    |-  ( ph  ->  <" A B C ">  .~  <" D E F "> )   =>    |-  ( ph  ->  ( A  .-  B )  =  ( D  .-  E ) )
 
Theoremcgr3simp2 25416 Deduce segment congruence from a triangle congruence. (Contributed by Thierry Arnoux, 27-Apr-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  .~  =  (cgrG `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  D  e.  P )   &    |-  ( ph  ->  E  e.  P )   &    |-  ( ph  ->  F  e.  P )   &    |-  ( ph  ->  <" A B C ">  .~  <" D E F "> )   =>    |-  ( ph  ->  ( B  .-  C )  =  ( E  .-  F ) )
 
Theoremcgr3simp3 25417 Deduce segment congruence from a triangle congruence. (Contributed by Thierry Arnoux, 27-Apr-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  .~  =  (cgrG `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  D  e.  P )   &    |-  ( ph  ->  E  e.  P )   &    |-  ( ph  ->  F  e.  P )   &    |-  ( ph  ->  <" A B C ">  .~  <" D E F "> )   =>    |-  ( ph  ->  ( C  .-  A )  =  ( F  .-  D ) )
 
Theoremcgr3swap12 25418 Permutation law for three-place congruence. (Contributed by Thierry Arnoux, 27-Apr-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  .~  =  (cgrG `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  D  e.  P )   &    |-  ( ph  ->  E  e.  P )   &    |-  ( ph  ->  F  e.  P )   &    |-  ( ph  ->  <" A B C ">  .~  <" D E F "> )   =>    |-  ( ph  ->  <" B A C ">  .~  <" E D F "> )
 
Theoremcgr3swap23 25419 Permutation law for three-place congruence. (Contributed by Thierry Arnoux, 27-Apr-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  .~  =  (cgrG `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  D  e.  P )   &    |-  ( ph  ->  E  e.  P )   &    |-  ( ph  ->  F  e.  P )   &    |-  ( ph  ->  <" A B C ">  .~  <" D E F "> )   =>    |-  ( ph  ->  <" A C B ">  .~  <" D F E "> )
 
Theoremcgr3swap13 25420 Permutation law for three-place congruence. (Contributed by Thierry Arnoux, 3-Oct-2020.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  .~  =  (cgrG `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  D  e.  P )   &    |-  ( ph  ->  E  e.  P )   &    |-  ( ph  ->  F  e.  P )   &    |-  ( ph  ->  <" A B C ">  .~  <" D E F "> )   =>    |-  ( ph  ->  <" C B A ">  .~  <" F E D "> )
 
Theoremcgr3rotr 25421 Permutation law for three-place congruence. (Contributed by Thierry Arnoux, 1-Aug-2020.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  .~  =  (cgrG `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  D  e.  P )   &    |-  ( ph  ->  E  e.  P )   &    |-  ( ph  ->  F  e.  P )   &    |-  ( ph  ->  <" A B C ">  .~  <" D E F "> )   =>    |-  ( ph  ->  <" C A B ">  .~  <" F D E "> )
 
Theoremcgr3rotl 25422 Permutation law for three-place congruence. (Contributed by Thierry Arnoux, 1-Aug-2020.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  .~  =  (cgrG `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  D  e.  P )   &    |-  ( ph  ->  E  e.  P )   &    |-  ( ph  ->  F  e.  P )   &    |-  ( ph  ->  <" A B C ">  .~  <" D E F "> )   =>    |-  ( ph  ->  <" B C A ">  .~  <" E F D "> )
 
Theoremtrgcgrcom 25423 Commutative law for three-place congruence. (Contributed by Thierry Arnoux, 27-Apr-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  .~  =  (cgrG `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  D  e.  P )   &    |-  ( ph  ->  E  e.  P )   &    |-  ( ph  ->  F  e.  P )   &    |-  ( ph  ->  <" A B C ">  .~  <" D E F "> )   =>    |-  ( ph  ->  <" D E F ">  .~  <" A B C "> )
 
Theoremcgr3tr 25424 Transitivity law for three-place congruence. (Contributed by Thierry Arnoux, 27-Apr-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  .~  =  (cgrG `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  D  e.  P )   &    |-  ( ph  ->  E  e.  P )   &    |-  ( ph  ->  F  e.  P )   &    |-  ( ph  ->  <" A B C ">  .~  <" D E F "> )   &    |-  ( ph  ->  J  e.  P )   &    |-  ( ph  ->  K  e.  P )   &    |-  ( ph  ->  L  e.  P )   &    |-  ( ph  ->  <" D E F ">  .~  <" J K L "> )   =>    |-  ( ph  ->  <" A B C ">  .~  <" J K L "> )
 
Theoremtgbtwnxfr 25425 A condition for extending betweenness to a new set of points based on congruence with another set of points. Theorem 4.6 of [Schwabhauser] p. 36. (Contributed by Thierry Arnoux, 27-Apr-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  .~  =  (cgrG `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  D  e.  P )   &    |-  ( ph  ->  E  e.  P )   &    |-  ( ph  ->  F  e.  P )   &    |-  ( ph  ->  <" A B C ">  .~  <" D E F "> )   &    |-  ( ph  ->  B  e.  ( A I C ) )   =>    |-  ( ph  ->  E  e.  ( D I F ) )
 
Theoremtgcgr4 25426 Two quadrilaterals to be congruent to each other if one triangle formed by their vertices is, and the additional points are equidistant too. (Contributed by Thierry Arnoux, 8-Oct-2020.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  .~  =  (cgrG `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  D  e.  P )   &    |-  ( ph  ->  W  e.  P )   &    |-  ( ph  ->  X  e.  P )   &    |-  ( ph  ->  Y  e.  P )   &    |-  ( ph  ->  Z  e.  P )   =>    |-  ( ph  ->  ( <" A B C D ">  .~  <" W X Y Z ">  <->  ( <" A B C ">  .~  <" W X Y ">  /\  (
 ( A  .-  D )  =  ( W  .-  Z )  /\  ( B  .-  D )  =  ( X  .-  Z )  /\  ( C  .-  D )  =  ( Y  .-  Z ) ) ) ) )
 
15.2.6  Motions
 
Syntaxcismt 25427 Declare the constant for the isometry builder.
 class Ismt
 
Definitiondf-ismt 25428* Define the set of isometries between two structures. Definition 4.8 of [Schwabhauser] p. 36. See isismt 25429. (Contributed by Thierry Arnoux, 13-Dec-2019.)
 |- Ismt  =  ( g  e.  _V ,  h  e.  _V  |->  { f  |  ( f : ( Base `  g
 )
 -1-1-onto-> ( Base `  h )  /\  A. a  e.  ( Base `  g ) A. b  e.  ( Base `  g ) ( ( f `  a ) ( dist `  h )
 ( f `  b
 ) )  =  ( a ( dist `  g
 ) b ) ) } )
 
Theoremisismt 25429* Property of being an isometry. Compare with isismty 33600. (Contributed by Thierry Arnoux, 13-Dec-2019.)
 |-  B  =  ( Base `  G )   &    |-  P  =  (
 Base `  H )   &    |-  D  =  ( dist `  G )   &    |-  .-  =  ( dist `  H )   =>    |-  (
 ( G  e.  V  /\  H  e.  W ) 
 ->  ( F  e.  ( GIsmt H )  <->  ( F : B
 -1-1-onto-> P  /\  A. a  e.  B  A. b  e.  B  ( ( F `
  a )  .-  ( F `  b ) )  =  ( a D b ) ) ) )
 
Theoremismot 25430* Property of being an isometry mapping to the same space. In geometry, this is also called a motion. (Contributed by Thierry Arnoux, 15-Dec-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   =>    |-  ( G  e.  V  ->  ( F  e.  ( GIsmt G )  <->  ( F : P
 -1-1-onto-> P  /\  A. a  e.  P  A. b  e.  P  ( ( F `
  a )  .-  ( F `  b ) )  =  ( a 
 .-  b ) ) ) )
 
Theoremmotcgr 25431 Property of a motion: distances are preserved. (Contributed by Thierry Arnoux, 15-Dec-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  ( ph  ->  G  e.  V )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  F  e.  ( GIsmt G ) )   =>    |-  ( ph  ->  ( ( F `  A )  .-  ( F `  B ) )  =  ( A  .-  B ) )
 
Theoremidmot 25432 The identity is a motion. (Contributed by Thierry Arnoux, 15-Dec-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  ( ph  ->  G  e.  V )   =>    |-  ( ph  ->  (  _I  |`  P )  e.  ( GIsmt G ) )
 
Theoremmotf1o 25433 Motions are bijections. (Contributed by Thierry Arnoux, 15-Dec-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  ( ph  ->  G  e.  V )   &    |-  ( ph  ->  F  e.  ( GIsmt G ) )   =>    |-  ( ph  ->  F : P -1-1-onto-> P )
 
Theoremmotcl 25434 Closure of motions. (Contributed by Thierry Arnoux, 15-Dec-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  ( ph  ->  G  e.  V )   &    |-  ( ph  ->  F  e.  ( GIsmt G ) )   &    |-  ( ph  ->  A  e.  P )   =>    |-  ( ph  ->  ( F `  A )  e.  P )
 
Theoremmotco 25435 The composition of two motions is a motion. (Contributed by Thierry Arnoux, 15-Dec-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  ( ph  ->  G  e.  V )   &    |-  ( ph  ->  F  e.  ( GIsmt G ) )   &    |-  ( ph  ->  H  e.  ( GIsmt G ) )   =>    |-  ( ph  ->  ( F  o.  H )  e.  ( GIsmt G ) )
 
Theoremcnvmot 25436 The converse of a motion is a motion. (Contributed by Thierry Arnoux, 15-Dec-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  ( ph  ->  G  e.  V )   &    |-  ( ph  ->  F  e.  ( GIsmt G ) )   =>    |-  ( ph  ->  `' F  e.  ( GIsmt G ) )
 
Theoremmotplusg 25437* The operation for motions is their composition. (Contributed by Thierry Arnoux, 15-Dec-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  ( ph  ->  G  e.  V )   &    |-  I  =  { <. (
 Base `  ndx ) ,  ( GIsmt G )
 >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( GIsmt G ) ,  g  e.  ( GIsmt G )  |->  ( f  o.  g ) )
 >. }   &    |-  ( ph  ->  F  e.  ( GIsmt G ) )   &    |-  ( ph  ->  H  e.  ( GIsmt G ) )   =>    |-  ( ph  ->  ( F ( +g  `  I
 ) H )  =  ( F  o.  H ) )
 
Theoremmotgrp 25438* The motions of a geometry form a group with respect to function composition, called the Isometry group. (Contributed by Thierry Arnoux, 15-Dec-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  ( ph  ->  G  e.  V )   &    |-  I  =  { <. (
 Base `  ndx ) ,  ( GIsmt G )
 >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( GIsmt G ) ,  g  e.  ( GIsmt G )  |->  ( f  o.  g ) )
 >. }   =>    |-  ( ph  ->  I  e.  Grp )
 
Theoremmotcgrg 25439* Property of a motion: distances are preserved. (Contributed by Thierry Arnoux, 15-Dec-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  ( ph  ->  G  e.  V )   &    |-  I  =  { <. (
 Base `  ndx ) ,  ( GIsmt G )
 >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( GIsmt G ) ,  g  e.  ( GIsmt G )  |->  ( f  o.  g ) )
 >. }   &    |-  .~  =  (cgrG `  G )   &    |-  ( ph  ->  T  e. Word  P )   &    |-  ( ph  ->  F  e.  ( GIsmt G ) )   =>    |-  ( ph  ->  ( F  o.  T ) 
 .~  T )
 
Theoremmotcgr3 25440 Property of a motion: distances are preserved, special case of triangles. (Contributed by Thierry Arnoux, 15-Dec-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  .~  =  (cgrG `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  D  =  ( H `  A ) )   &    |-  ( ph  ->  E  =  ( H `  B ) )   &    |-  ( ph  ->  F  =  ( H `  C ) )   &    |-  ( ph  ->  H  e.  ( GIsmt G ) )   =>    |-  ( ph  ->  <" A B C ">  .~  <" D E F "> )
 
15.2.7  Colinearity
 
Theoremtglng 25441* Lines of a Tarski Geometry. This relates to both Definition 4.10 of [Schwabhauser] p. 36. and Definition 6.14 of [Schwabhauser] p. 45. (Contributed by Thierry Arnoux, 28-Mar-2019.)
 |-  P  =  ( Base `  G )   &    |-  L  =  (LineG `  G )   &    |-  I  =  (Itv `  G )   =>    |-  ( G  e. TarskiG  ->  L  =  ( x  e.  P ,  y  e.  ( P  \  { x }
 )  |->  { z  e.  P  |  ( z  e.  ( x I y )  \/  x  e.  ( z I y )  \/  y  e.  ( x I z ) ) } ) )
 
Theoremtglnfn 25442 Lines as functions. (Contributed by Thierry Arnoux, 25-May-2019.)
 |-  P  =  ( Base `  G )   &    |-  L  =  (LineG `  G )   &    |-  I  =  (Itv `  G )   =>    |-  ( G  e. TarskiG  ->  L  Fn  ( ( P  X.  P )  \  _I  )
 )
 
Theoremtglnunirn 25443 Lines are sets of points. (Contributed by Thierry Arnoux, 25-May-2019.)
 |-  P  =  ( Base `  G )   &    |-  L  =  (LineG `  G )   &    |-  I  =  (Itv `  G )   =>    |-  ( G  e. TarskiG  ->  U. ran  L 
 C_  P )
 
Theoremtglnpt 25444 Lines are sets of points. (Contributed by Thierry Arnoux, 17-Oct-2019.)
 |-  P  =  ( Base `  G )   &    |-  L  =  (LineG `  G )   &    |-  I  =  (Itv `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  ran  L )   &    |-  ( ph  ->  X  e.  A )   =>    |-  ( ph  ->  X  e.  P )
 
Theoremtglngne 25445 It takes two different points to form a line. (Contributed by Thierry Arnoux, 6-Aug-2019.)
 |-  P  =  ( Base `  G )   &    |-  L  =  (LineG `  G )   &    |-  I  =  (Itv `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  X  e.  P )   &    |-  ( ph  ->  Y  e.  P )   &    |-  ( ph  ->  Z  e.  ( X L Y ) )   =>    |-  ( ph  ->  X  =/=  Y )
 
Theoremtglngval 25446* The line going through points  X and  Y. (Contributed by Thierry Arnoux, 28-Mar-2019.)
 |-  P  =  ( Base `  G )   &    |-  L  =  (LineG `  G )   &    |-  I  =  (Itv `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  X  e.  P )   &    |-  ( ph  ->  Y  e.  P )   &    |-  ( ph  ->  X  =/=  Y )   =>    |-  ( ph  ->  ( X L Y )  =  { z  e.  P  |  ( z  e.  ( X I Y )  \/  X  e.  ( z I Y )  \/  Y  e.  ( X I z ) ) } )
 
Theoremtglnssp 25447 Lines are subset of the geometry base set. That is, lines are sets of points. (Contributed by Thierry Arnoux, 17-May-2019.)
 |-  P  =  ( Base `  G )   &    |-  L  =  (LineG `  G )   &    |-  I  =  (Itv `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  X  e.  P )   &    |-  ( ph  ->  Y  e.  P )   &    |-  ( ph  ->  X  =/=  Y )   =>    |-  ( ph  ->  ( X L Y )  C_  P )
 
Theoremtgellng 25448 Property of lying on the line going through points  X and 
Y. Definition 4.10 of [Schwabhauser] p. 36. We choose the notation  Z  e.  ( X (LineG `  G
) Y ) instead of "colinear" because LineG is a common structure slot for other axiomatizations of geometry. (Contributed by Thierry Arnoux, 28-Mar-2019.)
 |-  P  =  ( Base `  G )   &    |-  L  =  (LineG `  G )   &    |-  I  =  (Itv `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  X  e.  P )   &    |-  ( ph  ->  Y  e.  P )   &    |-  ( ph  ->  X  =/=  Y )   &    |-  ( ph  ->  Z  e.  P )   =>    |-  ( ph  ->  ( Z  e.  ( X L Y )  <->  ( Z  e.  ( X I Y )  \/  X  e.  ( Z I Y )  \/  Y  e.  ( X I Z ) ) ) )
 
Theoremtgcolg 25449 We choose the notation  ( Z  e.  ( X L Y )  \/  X  =  Y ) instead of "colinear" in order to avoid defining an additional symbol for colinearity because LineG is a common structure slot for other axiomatizations of geometry. (Contributed by Thierry Arnoux, 25-May-2019.)
 |-  P  =  ( Base `  G )   &    |-  L  =  (LineG `  G )   &    |-  I  =  (Itv `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  X  e.  P )   &    |-  ( ph  ->  Y  e.  P )   &    |-  ( ph  ->  Z  e.  P )   =>    |-  ( ph  ->  (
 ( Z  e.  ( X L Y )  \/  X  =  Y )  <-> 
 ( Z  e.  ( X I Y )  \/  X  e.  ( Z I Y )  \/  Y  e.  ( X I Z ) ) ) )
 
Theorembtwncolg1 25450 Betweenness implies colinearity. (Contributed by Thierry Arnoux, 28-Mar-2019.)
 |-  P  =  ( Base `  G )   &    |-  L  =  (LineG `  G )   &    |-  I  =  (Itv `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  X  e.  P )   &    |-  ( ph  ->  Y  e.  P )   &    |-  ( ph  ->  Z  e.  P )   &    |-  ( ph  ->  Z  e.  ( X I Y ) )   =>    |-  ( ph  ->  ( Z  e.  ( X L Y )  \/  X  =  Y ) )
 
Theorembtwncolg2 25451 Betweenness implies colinearity. (Contributed by Thierry Arnoux, 28-Mar-2019.)
 |-  P  =  ( Base `  G )   &    |-  L  =  (LineG `  G )   &    |-  I  =  (Itv `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  X  e.  P )   &    |-  ( ph  ->  Y  e.  P )   &    |-  ( ph  ->  Z  e.  P )   &    |-  ( ph  ->  X  e.  ( Z I Y ) )   =>    |-  ( ph  ->  ( Z  e.  ( X L Y )  \/  X  =  Y ) )
 
Theorembtwncolg3 25452 Betweenness implies colinearity. (Contributed by Thierry Arnoux, 28-Mar-2019.)
 |-  P  =  ( Base `  G )   &    |-  L  =  (LineG `  G )   &    |-  I  =  (Itv `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  X  e.  P )   &    |-  ( ph  ->  Y  e.  P )   &    |-  ( ph  ->  Z  e.  P )   &    |-  ( ph  ->  Y  e.  ( X I Z ) )   =>    |-  ( ph  ->  ( Z  e.  ( X L Y )  \/  X  =  Y ) )
 
Theoremcolcom 25453 Swapping the points defining a line keeps it unchanged. Part of Theorem 4.11 of [Schwabhauser] p. 34. (Contributed by Thierry Arnoux, 3-Apr-2019.)
 |-  P  =  ( Base `  G )   &    |-  L  =  (LineG `  G )   &    |-  I  =  (Itv `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  X  e.  P )   &    |-  ( ph  ->  Y  e.  P )   &    |-  ( ph  ->  Z  e.  P )   &    |-  ( ph  ->  ( Z  e.  ( X L Y )  \/  X  =  Y ) )   =>    |-  ( ph  ->  ( Z  e.  ( Y L X )  \/  Y  =  X ) )
 
Theoremcolrot1 25454 Rotating the points defining a line. Part of Theorem 4.11 of [Schwabhauser] p. 34. (Contributed by Thierry Arnoux, 3-Apr-2019.)
 |-  P  =  ( Base `  G )   &    |-  L  =  (LineG `  G )   &    |-  I  =  (Itv `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  X  e.  P )   &    |-  ( ph  ->  Y  e.  P )   &    |-  ( ph  ->  Z  e.  P )   &    |-  ( ph  ->  ( Z  e.  ( X L Y )  \/  X  =  Y ) )   =>    |-  ( ph  ->  ( X  e.  ( Y L Z )  \/  Y  =  Z ) )
 
Theoremcolrot2 25455 Rotating the points defining a line. Part of Theorem 4.11 of [Schwabhauser] p. 34. (Contributed by Thierry Arnoux, 3-Apr-2019.)
 |-  P  =  ( Base `  G )   &    |-  L  =  (LineG `  G )   &    |-  I  =  (Itv `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  X  e.  P )   &    |-  ( ph  ->  Y  e.  P )   &    |-  ( ph  ->  Z  e.  P )   &    |-  ( ph  ->  ( Z  e.  ( X L Y )  \/  X  =  Y ) )   =>    |-  ( ph  ->  ( Y  e.  ( Z L X )  \/  Z  =  X ) )
 
Theoremncolcom 25456 Swapping non-colinear points. (Contributed by Thierry Arnoux, 19-Oct-2019.)
 |-  P  =  ( Base `  G )   &    |-  L  =  (LineG `  G )   &    |-  I  =  (Itv `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  X  e.  P )   &    |-  ( ph  ->  Y  e.  P )   &    |-  ( ph  ->  Z  e.  P )   &    |-  ( ph  ->  -.  ( Z  e.  ( X L Y )  \/  X  =  Y ) )   =>    |-  ( ph  ->  -.  ( Z  e.  ( Y L X )  \/  Y  =  X ) )
 
Theoremncolrot1 25457 Rotating non-colinear points. (Contributed by Thierry Arnoux, 19-Oct-2019.)
 |-  P  =  ( Base `  G )   &    |-  L  =  (LineG `  G )   &    |-  I  =  (Itv `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  X  e.  P )   &    |-  ( ph  ->  Y  e.  P )   &    |-  ( ph  ->  Z  e.  P )   &    |-  ( ph  ->  -.  ( Z  e.  ( X L Y )  \/  X  =  Y ) )   =>    |-  ( ph  ->  -.  ( X  e.  ( Y L Z )  \/  Y  =  Z ) )
 
Theoremncolrot2 25458 Rotating non-colinear points. (Contributed by Thierry Arnoux, 19-Oct-2019.)
 |-  P  =  ( Base `  G )   &    |-  L  =  (LineG `  G )   &    |-  I  =  (Itv `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  X  e.  P )   &    |-  ( ph  ->  Y  e.  P )   &    |-  ( ph  ->  Z  e.  P )   &    |-  ( ph  ->  -.  ( Z  e.  ( X L Y )  \/  X  =  Y ) )   =>    |-  ( ph  ->  -.  ( Y  e.  ( Z L X )  \/  Z  =  X ) )
 
Theoremtgdim01ln 25459 In geometries of dimension lower than 2, any 3 points are colinear. (Contributed by Thierry Arnoux, 27-Aug-2019.)
 |-  P  =  ( Base `  G )   &    |-  L  =  (LineG `  G )   &    |-  I  =  (Itv `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  X  e.  P )   &    |-  ( ph  ->  Y  e.  P )   &    |-  ( ph  ->  Z  e.  P )   &    |-  ( ph  ->  -.  GDimTarskiG 2 )   =>    |-  ( ph  ->  ( Z  e.  ( X L Y )  \/  X  =  Y ) )
 
Theoremncoltgdim2 25460 If there are 3 non-colinear points, dimension must be 2 or more. tglowdim2l 25545 converse. (Contributed by Thierry Arnoux, 23-Feb-2020.)
 |-  P  =  ( Base `  G )   &    |-  L  =  (LineG `  G )   &    |-  I  =  (Itv `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  X  e.  P )   &    |-  ( ph  ->  Y  e.  P )   &    |-  ( ph  ->  Z  e.  P )   &    |-  ( ph  ->  -.  ( Z  e.  ( X L Y )  \/  X  =  Y ) )   =>    |-  ( ph  ->  GDimTarskiG 2 )
 
Theoremlnxfr 25461 Transfer law for colinearity. Theorem 4.13 of [Schwabhauser] p. 37. (Contributed by Thierry Arnoux, 27-Apr-2019.)
 |-  P  =  ( Base `  G )   &    |-  L  =  (LineG `  G )   &    |-  I  =  (Itv `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  X  e.  P )   &    |-  ( ph  ->  Y  e.  P )   &    |-  ( ph  ->  Z  e.  P )   &    |-  .~  =  (cgrG `  G )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  ( Y  e.  ( X L Z )  \/  X  =  Z ) )   &    |-  ( ph  ->  <" X Y Z ">  .~  <" A B C "> )   =>    |-  ( ph  ->  ( B  e.  ( A L C )  \/  A  =  C ) )
 
Theoremlnext 25462* Extend a line with a missing point. Theorem 4.14 of [Schwabhauser] p. 37. (Contributed by Thierry Arnoux, 27-Apr-2019.)
 |-  P  =  ( Base `  G )   &    |-  L  =  (LineG `  G )   &    |-  I  =  (Itv `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  X  e.  P )   &    |-  ( ph  ->  Y  e.  P )   &    |-  ( ph  ->  Z  e.  P )   &    |-  .~  =  (cgrG `  G )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  .-  =  ( dist `  G )   &    |-  ( ph  ->  ( Y  e.  ( X L Z )  \/  X  =  Z ) )   &    |-  ( ph  ->  ( X  .-  Y )  =  ( A  .-  B ) )   =>    |-  ( ph  ->  E. c  e.  P  <" X Y Z ">  .~  <" A B c "> )
 
Theoremtgfscgr 25463 Congruence law for the general five segment configuration. Theorem 4.16 of [Schwabhauser] p. 37. (Contributed by Thierry Arnoux, 27-Apr-2019.)
 |-  P  =  ( Base `  G )   &    |-  L  =  (LineG `  G )   &    |-  I  =  (Itv `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  X  e.  P )   &    |-  ( ph  ->  Y  e.  P )   &    |-  ( ph  ->  Z  e.  P )   &    |-  .~  =  (cgrG `  G )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  .-  =  ( dist `  G )   &    |-  ( ph  ->  T  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  D  e.  P )   &    |-  ( ph  ->  ( Y  e.  ( X L Z )  \/  X  =  Z ) )   &    |-  ( ph  ->  <" X Y Z ">  .~  <" A B C "> )   &    |-  ( ph  ->  ( X  .-  T )  =  ( A  .-  D ) )   &    |-  ( ph  ->  ( Y  .-  T )  =  ( B  .-  D )
 )   &    |-  ( ph  ->  X  =/=  Y )   =>    |-  ( ph  ->  ( Z  .-  T )  =  ( C  .-  D ) )
 
Theoremlncgr 25464 Congruence rule for lines. Theorem 4.17 of [Schwabhauser] p. 37. (Contributed by Thierry Arnoux, 28-Apr-2019.)
 |-  P  =  ( Base `  G )   &    |-  L  =  (LineG `  G )   &    |-  I  =  (Itv `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  X  e.  P )   &    |-  ( ph  ->  Y  e.  P )   &    |-  ( ph  ->  Z  e.  P )   &    |-  .~  =  (cgrG `  G )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  .-  =  ( dist `  G )   &    |-  ( ph  ->  X  =/=  Y )   &    |-  ( ph  ->  ( Y  e.  ( X L Z )  \/  X  =  Z ) )   &    |-  ( ph  ->  ( X  .-  A )  =  ( X  .-  B ) )   &    |-  ( ph  ->  ( Y  .-  A )  =  ( Y  .-  B ) )   =>    |-  ( ph  ->  ( Z  .-  A )  =  ( Z  .-  B ) )
 
Theoremlnid 25465 Identity law for points on lines. Theorem 4.18 of [Schwabhauser] p. 38. (Contributed by Thierry Arnoux, 28-Apr-2019.)
 |-  P  =  ( Base `  G )   &    |-  L  =  (LineG `  G )   &    |-  I  =  (Itv `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  X  e.  P )   &    |-  ( ph  ->  Y  e.  P )   &    |-  ( ph  ->  Z  e.  P )   &    |-  .~  =  (cgrG `  G )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  .-  =  ( dist `  G )   &    |-  ( ph  ->  X  =/=  Y )   &    |-  ( ph  ->  ( Y  e.  ( X L Z )  \/  X  =  Z ) )   &    |-  ( ph  ->  ( X  .-  Z )  =  ( X  .-  A ) )   &    |-  ( ph  ->  ( Y  .-  Z )  =  ( Y  .-  A ) )   =>    |-  ( ph  ->  Z  =  A )
 
Theoremtgidinside 25466 Law for finding a point inside a segment. Theorem 4.19 of [Schwabhauser] p. 38. (Contributed by Thierry Arnoux, 28-Apr-2019.)
 |-  P  =  ( Base `  G )   &    |-  L  =  (LineG `  G )   &    |-  I  =  (Itv `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  X  e.  P )   &    |-  ( ph  ->  Y  e.  P )   &    |-  ( ph  ->  Z  e.  P )   &    |-  .~  =  (cgrG `  G )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  .-  =  ( dist `  G )   &    |-  ( ph  ->  Z  e.  ( X I Y ) )   &    |-  ( ph  ->  ( X  .-  Z )  =  ( X  .-  A ) )   &    |-  ( ph  ->  ( Y  .-  Z )  =  ( Y  .-  A )
 )   =>    |-  ( ph  ->  Z  =  A )
 
15.2.8  Connectivity of betweenness
 
Theoremtgbtwnconn1lem1 25467 Lemma for tgbtwnconn1 25470. (Contributed by Thierry Arnoux, 30-Apr-2019.)
 |-  P  =  ( Base `  G )   &    |-  I  =  (Itv `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  D  e.  P )   &    |-  ( ph  ->  A  =/=  B )   &    |-  ( ph  ->  B  e.  ( A I C ) )   &    |-  ( ph  ->  B  e.  ( A I D ) )   &    |-  .-  =  ( dist `  G )   &    |-  ( ph  ->  E  e.  P )   &    |-  ( ph  ->  F  e.  P )   &    |-  ( ph  ->  H  e.  P )   &    |-  ( ph  ->  J  e.  P )   &    |-  ( ph  ->  D  e.  ( A I E ) )   &    |-  ( ph  ->  C  e.  ( A I F ) )   &    |-  ( ph  ->  E  e.  ( A I H ) )   &    |-  ( ph  ->  F  e.  ( A I J ) )   &    |-  ( ph  ->  ( E  .-  D )  =  ( C  .-  D ) )   &    |-  ( ph  ->  ( C  .-  F )  =  ( C  .-  D ) )   &    |-  ( ph  ->  ( E  .-  H )  =  ( B  .-  C ) )   &    |-  ( ph  ->  ( F  .-  J )  =  ( B  .-  D ) )   =>    |-  ( ph  ->  H  =  J )
 
Theoremtgbtwnconn1lem2 25468 Lemma for tgbtwnconn1 25470. (Contributed by Thierry Arnoux, 30-Apr-2019.)
 |-  P  =  ( Base `  G )   &    |-  I  =  (Itv `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  D  e.  P )   &    |-  ( ph  ->  A  =/=  B )   &    |-  ( ph  ->  B  e.  ( A I C ) )   &    |-  ( ph  ->  B  e.  ( A I D ) )   &    |-  .-  =  ( dist `  G )   &    |-  ( ph  ->  E  e.  P )   &    |-  ( ph  ->  F  e.  P )   &    |-  ( ph  ->  H  e.  P )   &    |-  ( ph  ->  J  e.  P )   &    |-  ( ph  ->  D  e.  ( A I E ) )   &    |-  ( ph  ->  C  e.  ( A I F ) )   &    |-  ( ph  ->  E  e.  ( A I H ) )   &    |-  ( ph  ->  F  e.  ( A I J ) )   &    |-  ( ph  ->  ( E  .-  D )  =  ( C  .-  D ) )   &    |-  ( ph  ->  ( C  .-  F )  =  ( C  .-  D ) )   &    |-  ( ph  ->  ( E  .-  H )  =  ( B  .-  C ) )   &    |-  ( ph  ->  ( F  .-  J )  =  ( B  .-  D ) )   =>    |-  ( ph  ->  ( E  .-  F )  =  ( C  .-  D ) )
 
Theoremtgbtwnconn1lem3 25469 Lemma for tgbtwnconn1 25470. (Contributed by Thierry Arnoux, 30-Apr-2019.)
 |-  P  =  ( Base `  G )   &    |-  I  =  (Itv `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  D  e.  P )   &    |-  ( ph  ->  A  =/=  B )   &    |-  ( ph  ->  B  e.  ( A I C ) )   &    |-  ( ph  ->  B  e.  ( A I D ) )   &    |-  .-  =  ( dist `  G )   &    |-  ( ph  ->  E  e.  P )   &    |-  ( ph  ->  F  e.  P )   &    |-  ( ph  ->  H  e.  P )   &    |-  ( ph  ->  J  e.  P )   &    |-  ( ph  ->  D  e.  ( A I E ) )   &    |-  ( ph  ->  C  e.  ( A I F ) )   &    |-  ( ph  ->  E  e.  ( A I H ) )   &    |-  ( ph  ->  F  e.  ( A I J ) )   &    |-  ( ph  ->  ( E  .-  D )  =  ( C  .-  D ) )   &    |-  ( ph  ->  ( C  .-  F )  =  ( C  .-  D ) )   &    |-  ( ph  ->  ( E  .-  H )  =  ( B  .-  C ) )   &    |-  ( ph  ->  ( F  .-  J )  =  ( B  .-  D ) )   &    |-  ( ph  ->  X  e.  P )   &    |-  ( ph  ->  X  e.  ( C I E ) )   &    |-  ( ph  ->  X  e.  ( D I F ) )   &    |-  ( ph  ->  C  =/=  E )   =>    |-  ( ph  ->  D  =  F )
 
Theoremtgbtwnconn1 25470 Connectivity law for betweenness. Theorem 5.1 of [Schwabhauser] p. 39-41. In earlier presentations of Tarski's axioms, this theorem appeared as an additional axiom. It was derived from the other axioms by Gupta, 1965. (Contributed by Thierry Arnoux, 30-Apr-2019.)
 |-  P  =  ( Base `  G )   &    |-  I  =  (Itv `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  D  e.  P )   &    |-  ( ph  ->  A  =/=  B )   &    |-  ( ph  ->  B  e.  ( A I C ) )   &    |-  ( ph  ->  B  e.  ( A I D ) )   =>    |-  ( ph  ->  ( C  e.  ( A I D )  \/  D  e.  ( A I C ) ) )
 
Theoremtgbtwnconn2 25471 Another connectivity law for betweenness. Theorem 5.2 of [Schwabhauser] p. 41. (Contributed by Thierry Arnoux, 17-May-2019.)
 |-  P  =  ( Base `  G )   &    |-  I  =  (Itv `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  D  e.  P )   &    |-  ( ph  ->  A  =/=  B )   &    |-  ( ph  ->  B  e.  ( A I C ) )   &    |-  ( ph  ->  B  e.  ( A I D ) )   =>    |-  ( ph  ->  ( C  e.  ( B I D )  \/  D  e.  ( B I C ) ) )
 
Theoremtgbtwnconn3 25472 Inner connectivity law for betweenness. Theorem 5.3 of [Schwabhauser] p. 41. (Contributed by Thierry Arnoux, 17-May-2019.)
 |-  P  =  ( Base `  G )   &    |-  I  =  (Itv `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  D  e.  P )   &    |-  ( ph  ->  B  e.  ( A I D ) )   &    |-  ( ph  ->  C  e.  ( A I D ) )   =>    |-  ( ph  ->  ( B  e.  ( A I C )  \/  C  e.  ( A I B ) ) )
 
Theoremtgbtwnconnln3 25473 Derive colinearity from betweenness. (Contributed by Thierry Arnoux, 17-May-2019.)
 |-  P  =  ( Base `  G )   &    |-  I  =  (Itv `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  D  e.  P )   &    |-  ( ph  ->  B  e.  ( A I D ) )   &    |-  ( ph  ->  C  e.  ( A I D ) )   &    |-  L  =  (LineG `  G )   =>    |-  ( ph  ->  ( B  e.  ( A L C )  \/  A  =  C ) )
 
Theoremtgbtwnconn22 25474 Double connectivity law for betweenness. (Contributed by Thierry Arnoux, 1-Dec-2019.)
 |-  P  =  ( Base `  G )   &    |-  I  =  (Itv `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  D  e.  P )   &    |-  ( ph  ->  E  e.  P )   &    |-  ( ph  ->  A  =/=  B )   &    |-  ( ph  ->  C  =/=  B )   &    |-  ( ph  ->  B  e.  ( A I C ) )   &    |-  ( ph  ->  B  e.  ( A I D ) )   &    |-  ( ph  ->  B  e.  ( C I E ) )   =>    |-  ( ph  ->  B  e.  ( D I E ) )
 
Theoremtgbtwnconnln1 25475 Derive colinearity from betweenness. (Contributed by Thierry Arnoux, 17-May-2019.)
 |-  P  =  ( Base `  G )   &    |-  I  =  (Itv `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  D  e.  P )   &    |-  L  =  (LineG `  G )   &    |-  ( ph  ->  A  =/=  B )   &    |-  ( ph  ->  B  e.  ( A I C ) )   &    |-  ( ph  ->  B  e.  ( A I D ) )   =>    |-  ( ph  ->  ( A  e.  ( C L D )  \/  C  =  D ) )
 
Theoremtgbtwnconnln2 25476 Derive colinearity from betweenness. (Contributed by Thierry Arnoux, 17-May-2019.)
 |-  P  =  ( Base `  G )   &    |-  I  =  (Itv `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  D  e.  P )   &    |-  L  =  (LineG `  G )   &    |-  ( ph  ->  A  =/=  B )   &    |-  ( ph  ->  B  e.  ( A I C ) )   &    |-  ( ph  ->  B  e.  ( A I D ) )   =>    |-  ( ph  ->  ( B  e.  ( C L D )  \/  C  =  D ) )
 
15.2.9  Less-than relation in geometric congruences
 
Syntaxcleg 25477 Less-than relation for geometric congruences.
 class ≤G
 
Definitiondf-leg 25478* Define the less-than relationship between geometric distance congruence classes. See legval 25479. (Contributed by Thierry Arnoux, 21-Jun-2019.)
 |- ≤G  =  ( g  e.  _V  |->  {
 <. e ,  f >.  | 
 [. ( Base `  g
 )  /  p ]. [. ( dist `  g )  /  d ]. [. (Itv `  g )  /  i ]. E. x  e.  p  E. y  e.  p  ( f  =  ( x d y ) 
 /\  E. z  e.  p  ( z  e.  ( x i y ) 
 /\  e  =  ( x d z ) ) ) } )
 
Theoremlegval 25479* Value of the less-than relationship. (Contributed by Thierry Arnoux, 21-Jun-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  .<_  =  (≤G `  G )   &    |-  ( ph  ->  G  e. TarskiG )   =>    |-  ( ph  ->  .<_  =  { <. e ,  f >.  |  E. x  e.  P  E. y  e.  P  ( f  =  ( x  .-  y
 )  /\  E. z  e.  P  ( z  e.  ( x I y )  /\  e  =  ( x  .-  z
 ) ) ) }
 )
 
Theoremlegov 25480* Value of the less-than relationship. Definition 5.4 of [Schwabhauser] p. 41. (Contributed by Thierry Arnoux, 21-Jun-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  .<_  =  (≤G `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  D  e.  P )   =>    |-  ( ph  ->  (
 ( A  .-  B )  .<_  ( C  .-  D )  <->  E. z  e.  P  ( z  e.  ( C I D )  /\  ( A  .-  B )  =  ( C  .-  z ) ) ) )
 
Theoremlegov2 25481* An equivalent definition of the less-than relationship. Definition 5.5 of [Schwabhauser] p. 41. (Contributed by Thierry Arnoux, 21-Jun-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  .<_  =  (≤G `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  D  e.  P )   =>    |-  ( ph  ->  (
 ( A  .-  B )  .<_  ( C  .-  D )  <->  E. x  e.  P  ( B  e.  ( A I x )  /\  ( A  .-  x )  =  ( C  .-  D ) ) ) )
 
Theoremlegid 25482 Reflexivity of the less-than relationship. Proposition 5.7 of [Schwabhauser] p. 42. (Contributed by Thierry Arnoux, 27-Jun-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  .<_  =  (≤G `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   =>    |-  ( ph  ->  ( A  .-  B )  .<_  ( A  .-  B )
 )
 
Theorembtwnleg 25483 Betweenness implies less-than relation. (Contributed by Thierry Arnoux, 3-Jul-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  .<_  =  (≤G `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  B  e.  ( A I C ) )   =>    |-  ( ph  ->  ( A  .-  B )  .<_  ( A 
 .-  C ) )
 
Theoremlegtrd 25484 Transitivity of the less-than relationship. Proposition 5.8 of [Schwabhauser] p. 42. (Contributed by Thierry Arnoux, 27-Jun-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  .<_  =  (≤G `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  D  e.  P )   &    |-  ( ph  ->  E  e.  P )   &    |-  ( ph  ->  F  e.  P )   &    |-  ( ph  ->  ( A  .-  B )  .<_  ( C 
 .-  D ) )   &    |-  ( ph  ->  ( C  .-  D )  .<_  ( E 
 .-  F ) )   =>    |-  ( ph  ->  ( A  .-  B )  .<_  ( E 
 .-  F ) )
 
Theoremlegtri3 25485 Equality from the less-than relationship. Proposition 5.9 of [Schwabhauser] p. 42. (Contributed by Thierry Arnoux, 27-Jun-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  .<_  =  (≤G `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  D  e.  P )   &    |-  ( ph  ->  ( A  .-  B )  .<_  ( C  .-  D )
 )   &    |-  ( ph  ->  ( C  .-  D )  .<_  ( A  .-  B )
 )   =>    |-  ( ph  ->  ( A  .-  B )  =  ( C  .-  D ) )
 
Theoremlegtrid 25486 Trichotomy law for the less-than relationship. Proposition 5.10 of [Schwabhauser] p. 42. (Contributed by Thierry Arnoux, 27-Jun-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  .<_  =  (≤G `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  D  e.  P )   =>    |-  ( ph  ->  (
 ( A  .-  B )  .<_  ( C  .-  D )  \/  ( C  .-  D )  .<_  ( A  .-  B )
 ) )
 
Theoremleg0 25487 Degenerated (zero-length) segments are minimal. Proposition 5.11 of [Schwabhauser] p. 42. (Contributed by Thierry Arnoux, 27-Jun-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  .<_  =  (≤G `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  D  e.  P )   =>    |-  ( ph  ->  ( A  .-  A )  .<_  ( C  .-  D )
 )
 
Theoremlegeq 25488 Deduce equality from "less than" null segments. (Contributed by Thierry Arnoux, 12-Aug-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  .<_  =  (≤G `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  D  e.  P )   &    |-  ( ph  ->  ( A  .-  B )  .<_  ( C  .-  C )
 )   =>    |-  ( ph  ->  A  =  B )
 
Theoremlegbtwn 25489 Deduce betweenness from "less than" relation. Corresponds loosely to Proposition 6.13 of [Schwabhauser] p. 45. (Contributed by Thierry Arnoux, 25-Aug-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  .<_  =  (≤G `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  D  e.  P )   &    |-  ( ph  ->  ( A  e.  ( C I B )  \/  B  e.  ( C I A ) ) )   &    |-  ( ph  ->  ( C  .-  A )  .<_  ( C 
 .-  B ) )   =>    |-  ( ph  ->  A  e.  ( C I B ) )
 
Theoremtgcgrsub2 25490 Removing identical parts from the end of a line segment preserves congruence. In this version the order of points is not known. (Contributed by Thierry Arnoux, 3-Apr-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  .<_  =  (≤G `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  D  e.  P )   &    |-  ( ph  ->  D  e.  P )   &    |-  ( ph  ->  E  e.  P )   &    |-  ( ph  ->  F  e.  P )   &    |-  ( ph  ->  ( B  e.  ( A I C )  \/  C  e.  ( A I B ) ) )   &    |-  ( ph  ->  ( E  e.  ( D I F )  \/  F  e.  ( D I E ) ) )   &    |-  ( ph  ->  ( A  .-  B )  =  ( D  .-  E ) )   &    |-  ( ph  ->  ( A  .-  C )  =  ( D  .-  F ) )   =>    |-  ( ph  ->  ( B  .-  C )  =  ( E  .-  F ) )
 
Theoremltgseg 25491* The set  E denotes the possible values of the congruence. (Contributed by Thierry Arnoux, 15-Dec-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  .<_  =  (≤G `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  E  =  (  .-  " ( P  X.  P ) )   &    |-  ( ph  ->  Fun  .-  )   &    |-  ( ph  ->  A  e.  E )   =>    |-  ( ph  ->  E. x  e.  P  E. y  e.  P  A  =  ( x  .-  y )
 )
 
Theoremltgov 25492 Strict "shorter than" geometric relation between segments. (Contributed by Thierry Arnoux, 15-Dec-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  .<_  =  (≤G `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  E  =  (  .-  " ( P  X.  P ) )   &    |-  ( ph  ->  Fun  .-  )   &    |-  .<  =  ( (  .<_  |`  E ) 
 \  _I  )   &    |-  ( ph  ->  ( P  X.  P )  C_  dom  .-  )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   =>    |-  ( ph  ->  (
 ( A  .-  B )  .<  ( C  .-  D )  <->  ( ( A 
 .-  B )  .<_  ( C  .-  D )  /\  ( A  .-  B )  =/=  ( C  .-  D ) ) ) )
 
Theoremlegov3 25493 An equivalent definition of the less-than relationship, from the strict relation. (Contributed by Thierry Arnoux, 15-Dec-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  .<_  =  (≤G `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  E  =  (  .-  " ( P  X.  P ) )   &    |-  ( ph  ->  Fun  .-  )   &    |-  .<  =  ( (  .<_  |`  E ) 
 \  _I  )   &    |-  ( ph  ->  ( P  X.  P )  C_  dom  .-  )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   =>    |-  ( ph  ->  (
 ( A  .-  B )  .<_  ( C  .-  D )  <->  ( ( A 
 .-  B )  .<  ( C  .-  D )  \/  ( A  .-  B )  =  ( C  .-  D ) ) ) )
 
Theoremlegso 25494 The shorter-than relationship builds an order over pairs. Remark 5.13 of [Schwabhauser] p. 42. (Contributed by Thierry Arnoux, 27-Jun-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  .<_  =  (≤G `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  E  =  (  .-  " ( P  X.  P ) )   &    |-  ( ph  ->  Fun  .-  )   &    |-  .<  =  ( (  .<_  |`  E ) 
 \  _I  )   &    |-  ( ph  ->  ( P  X.  P )  C_  dom  .-  )   =>    |-  ( ph  ->  .<  Or  E )
 
15.2.10  Rays
 
Syntaxchlg 25495 Function producing the relation "belong to the same half-line".
 class hlG
 
Definitiondf-hlg 25496* Define the function producting the relation "belong to the same half-line" (Contributed by Thierry Arnoux, 15-Aug-2020.)
 |- hlG 
 =  ( g  e. 
 _V  |->  ( c  e.  ( Base `  g )  |->  { <. a ,  b >.  |  ( ( a  e.  ( Base `  g
 )  /\  b  e.  ( Base `  g )
 )  /\  ( a  =/=  c  /\  b  =/=  c  /\  ( a  e.  ( c (Itv `  g ) b )  \/  b  e.  (
 c (Itv `  g
 ) a ) ) ) ) } )
 )
 
Theoremishlg 25497 Rays : Definition 6.1 of [Schwabhauser] p. 43. With this definition,  A ( K `
 C ) B means that  A and  B are on the same ray with initial point  C. This follows the same notation as Schwabhauser where rays are first defined as a relation. It is possible to recover the ray itself using e.g.  ( ( K `  C ) " { A } ) (Contributed by Thierry Arnoux, 21-Dec-2019.)
 |-  P  =  ( Base `  G )   &    |-  I  =  (Itv `  G )   &    |-  K  =  (hlG `  G )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  G  e.  V )   =>    |-  ( ph  ->  ( A ( K `  C ) B  <->  ( A  =/=  C 
 /\  B  =/=  C  /\  ( A  e.  ( C I B )  \/  B  e.  ( C I A ) ) ) ) )
 
Theoremhlcomb 25498 The half-line relation commutes. Theorem 6.6 of [Schwabhauser] p. 44. (Contributed by Thierry Arnoux, 21-Feb-2020.)
 |-  P  =  ( Base `  G )   &    |-  I  =  (Itv `  G )   &    |-  K  =  (hlG `  G )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  G  e.  V )   =>    |-  ( ph  ->  ( A ( K `  C ) B  <->  B ( K `  C ) A ) )
 
Theoremhlcomd 25499 The half-line relation commutes. Theorem 6.6 of [Schwabhauser] p. 44. (Contributed by Thierry Arnoux, 21-Feb-2020.)
 |-  P  =  ( Base `  G )   &    |-  I  =  (Itv `  G )   &    |-  K  =  (hlG `  G )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  G  e.  V )   &    |-  ( ph  ->  A ( K `
  C ) B )   =>    |-  ( ph  ->  B ( K `  C ) A )
 
Theoremhlne1 25500 The half-line relation implies inequality. (Contributed by Thierry Arnoux, 22-Feb-2020.)
 |-  P  =  ( Base `  G )   &    |-  I  =  (Itv `  G )   &    |-  K  =  (hlG `  G )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  G  e.  V )   &    |-  ( ph  ->  A ( K `
  C ) B )   =>    |-  ( ph  ->  A  =/=  C )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42551
  Copyright terms: Public domain < Previous  Next >