| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isclo2 | Structured version Visualization version Unicode version | ||
| Description: A set |
| Ref | Expression |
|---|---|
| isclo.1 |
|
| Ref | Expression |
|---|---|
| isclo2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isclo.1 |
. . 3
| |
| 2 | 1 | isclo 20891 |
. 2
|
| 3 | eleq1 2689 |
. . . . . . . . . . 11
| |
| 4 | 3 | bibi2d 332 |
. . . . . . . . . 10
|
| 5 | 4 | cbvralv 3171 |
. . . . . . . . 9
|
| 6 | 5 | anbi2i 730 |
. . . . . . . 8
|
| 7 | pm4.24 675 |
. . . . . . . 8
| |
| 8 | raaanv 4083 |
. . . . . . . 8
| |
| 9 | 6, 7, 8 | 3bitr4i 292 |
. . . . . . 7
|
| 10 | bibi1 341 |
. . . . . . . . . . . . 13
| |
| 11 | 10 | biimpa 501 |
. . . . . . . . . . . 12
|
| 12 | 11 | biimpcd 239 |
. . . . . . . . . . 11
|
| 13 | 12 | ralimdv 2963 |
. . . . . . . . . 10
|
| 14 | 13 | com12 32 |
. . . . . . . . 9
|
| 15 | dfss3 3592 |
. . . . . . . . 9
| |
| 16 | 14, 15 | syl6ibr 242 |
. . . . . . . 8
|
| 17 | 16 | ralimi 2952 |
. . . . . . 7
|
| 18 | 9, 17 | sylbi 207 |
. . . . . 6
|
| 19 | eleq1 2689 |
. . . . . . . . . . 11
| |
| 20 | 19 | imbi1d 331 |
. . . . . . . . . 10
|
| 21 | 20 | rspcv 3305 |
. . . . . . . . 9
|
| 22 | dfss3 3592 |
. . . . . . . . . . 11
| |
| 23 | 22 | imbi2i 326 |
. . . . . . . . . 10
|
| 24 | r19.21v 2960 |
. . . . . . . . . 10
| |
| 25 | 23, 24 | bitr4i 267 |
. . . . . . . . 9
|
| 26 | 21, 25 | syl6ib 241 |
. . . . . . . 8
|
| 27 | ssel 3597 |
. . . . . . . . . . 11
| |
| 28 | 27 | com12 32 |
. . . . . . . . . 10
|
| 29 | 28 | imim2d 57 |
. . . . . . . . 9
|
| 30 | 29 | ralimdv 2963 |
. . . . . . . 8
|
| 31 | 26, 30 | jcad 555 |
. . . . . . 7
|
| 32 | ralbiim 3069 |
. . . . . . 7
| |
| 33 | 31, 32 | syl6ibr 242 |
. . . . . 6
|
| 34 | 18, 33 | impbid2 216 |
. . . . 5
|
| 35 | 34 | pm5.32i 669 |
. . . 4
|
| 36 | 35 | rexbii 3041 |
. . 3
|
| 37 | 36 | ralbii 2980 |
. 2
|
| 38 | 2, 37 | syl6bb 276 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-topgen 16104 df-top 20699 df-cld 20823 |
| This theorem is referenced by: connpconn 31217 |
| Copyright terms: Public domain | W3C validator |