| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ishtpy | Structured version Visualization version Unicode version | ||
| Description: Membership in the class of homotopies between two continuous functions. (Contributed by Mario Carneiro, 22-Feb-2015.) (Revised by Mario Carneiro, 5-Sep-2015.) |
| Ref | Expression |
|---|---|
| ishtpy.1 |
|
| ishtpy.3 |
|
| ishtpy.4 |
|
| Ref | Expression |
|---|---|
| ishtpy |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-htpy 22769 |
. . . . . 6
| |
| 2 | 1 | a1i 11 |
. . . . 5
|
| 3 | simprl 794 |
. . . . . . 7
| |
| 4 | simprr 796 |
. . . . . . 7
| |
| 5 | 3, 4 | oveq12d 6668 |
. . . . . 6
|
| 6 | 3 | oveq1d 6665 |
. . . . . . . 8
|
| 7 | 6, 4 | oveq12d 6668 |
. . . . . . 7
|
| 8 | 3 | unieqd 4446 |
. . . . . . . . 9
|
| 9 | ishtpy.1 |
. . . . . . . . . . 11
| |
| 10 | toponuni 20719 |
. . . . . . . . . . 11
| |
| 11 | 9, 10 | syl 17 |
. . . . . . . . . 10
|
| 12 | 11 | adantr 481 |
. . . . . . . . 9
|
| 13 | 8, 12 | eqtr4d 2659 |
. . . . . . . 8
|
| 14 | 13 | raleqdv 3144 |
. . . . . . 7
|
| 15 | 7, 14 | rabeqbidv 3195 |
. . . . . 6
|
| 16 | 5, 5, 15 | mpt2eq123dv 6717 |
. . . . 5
|
| 17 | topontop 20718 |
. . . . . 6
| |
| 18 | 9, 17 | syl 17 |
. . . . 5
|
| 19 | ishtpy.3 |
. . . . . 6
| |
| 20 | cntop2 21045 |
. . . . . 6
| |
| 21 | 19, 20 | syl 17 |
. . . . 5
|
| 22 | ssrab2 3687 |
. . . . . . . . . 10
| |
| 23 | ovex 6678 |
. . . . . . . . . . 11
| |
| 24 | 23 | elpw2 4828 |
. . . . . . . . . 10
|
| 25 | 22, 24 | mpbir 221 |
. . . . . . . . 9
|
| 26 | 25 | rgen2w 2925 |
. . . . . . . 8
|
| 27 | eqid 2622 |
. . . . . . . . 9
| |
| 28 | 27 | fmpt2 7237 |
. . . . . . . 8
|
| 29 | 26, 28 | mpbi 220 |
. . . . . . 7
|
| 30 | ovex 6678 |
. . . . . . . 8
| |
| 31 | 30, 30 | xpex 6962 |
. . . . . . 7
|
| 32 | 23 | pwex 4848 |
. . . . . . 7
|
| 33 | fex2 7121 |
. . . . . . 7
| |
| 34 | 29, 31, 32, 33 | mp3an 1424 |
. . . . . 6
|
| 35 | 34 | a1i 11 |
. . . . 5
|
| 36 | 2, 16, 18, 21, 35 | ovmpt2d 6788 |
. . . 4
|
| 37 | fveq1 6190 |
. . . . . . . . 9
| |
| 38 | 37 | eqeq2d 2632 |
. . . . . . . 8
|
| 39 | fveq1 6190 |
. . . . . . . . 9
| |
| 40 | 39 | eqeq2d 2632 |
. . . . . . . 8
|
| 41 | 38, 40 | bi2anan9 917 |
. . . . . . 7
|
| 42 | 41 | adantl 482 |
. . . . . 6
|
| 43 | 42 | ralbidv 2986 |
. . . . 5
|
| 44 | 43 | rabbidv 3189 |
. . . 4
|
| 45 | ishtpy.4 |
. . . 4
| |
| 46 | 23 | rabex 4813 |
. . . . 5
|
| 47 | 46 | a1i 11 |
. . . 4
|
| 48 | 36, 44, 19, 45, 47 | ovmpt2d 6788 |
. . 3
|
| 49 | 48 | eleq2d 2687 |
. 2
|
| 50 | oveq 6656 |
. . . . . 6
| |
| 51 | 50 | eqeq1d 2624 |
. . . . 5
|
| 52 | oveq 6656 |
. . . . . 6
| |
| 53 | 52 | eqeq1d 2624 |
. . . . 5
|
| 54 | 51, 53 | anbi12d 747 |
. . . 4
|
| 55 | 54 | ralbidv 2986 |
. . 3
|
| 56 | 55 | elrab 3363 |
. 2
|
| 57 | 49, 56 | syl6bb 276 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-map 7859 df-top 20699 df-topon 20716 df-cn 21031 df-htpy 22769 |
| This theorem is referenced by: htpycn 22772 htpyi 22773 ishtpyd 22774 |
| Copyright terms: Public domain | W3C validator |