MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ishtpy Structured version   Visualization version   Unicode version

Theorem ishtpy 22771
Description: Membership in the class of homotopies between two continuous functions. (Contributed by Mario Carneiro, 22-Feb-2015.) (Revised by Mario Carneiro, 5-Sep-2015.)
Hypotheses
Ref Expression
ishtpy.1  |-  ( ph  ->  J  e.  (TopOn `  X ) )
ishtpy.3  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
ishtpy.4  |-  ( ph  ->  G  e.  ( J  Cn  K ) )
Assertion
Ref Expression
ishtpy  |-  ( ph  ->  ( H  e.  ( F ( J Htpy  K
) G )  <->  ( H  e.  ( ( J  tX  II )  Cn  K
)  /\  A. s  e.  X  ( (
s H 0 )  =  ( F `  s )  /\  (
s H 1 )  =  ( G `  s ) ) ) ) )
Distinct variable groups:    F, s    G, s    H, s    J, s    ph, s    X, s
Allowed substitution hint:    K( s)

Proof of Theorem ishtpy
Dummy variables  f 
g  h  j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-htpy 22769 . . . . . 6  |- Htpy  =  ( j  e.  Top , 
k  e.  Top  |->  ( f  e.  ( j  Cn  k ) ,  g  e.  ( j  Cn  k )  |->  { h  e.  ( ( j  tX  II )  Cn  k )  | 
A. s  e.  U. j ( ( s h 0 )  =  ( f `  s
)  /\  ( s
h 1 )  =  ( g `  s
) ) } ) )
21a1i 11 . . . . 5  |-  ( ph  -> Htpy  =  ( j  e. 
Top ,  k  e.  Top  |->  ( f  e.  ( j  Cn  k
) ,  g  e.  ( j  Cn  k
)  |->  { h  e.  ( ( j  tX  II )  Cn  k
)  |  A. s  e.  U. j ( ( s h 0 )  =  ( f `  s )  /\  (
s h 1 )  =  ( g `  s ) ) } ) ) )
3 simprl 794 . . . . . . 7  |-  ( (
ph  /\  ( j  =  J  /\  k  =  K ) )  -> 
j  =  J )
4 simprr 796 . . . . . . 7  |-  ( (
ph  /\  ( j  =  J  /\  k  =  K ) )  -> 
k  =  K )
53, 4oveq12d 6668 . . . . . 6  |-  ( (
ph  /\  ( j  =  J  /\  k  =  K ) )  -> 
( j  Cn  k
)  =  ( J  Cn  K ) )
63oveq1d 6665 . . . . . . . 8  |-  ( (
ph  /\  ( j  =  J  /\  k  =  K ) )  -> 
( j  tX  II )  =  ( J  tX  II ) )
76, 4oveq12d 6668 . . . . . . 7  |-  ( (
ph  /\  ( j  =  J  /\  k  =  K ) )  -> 
( ( j  tX  II )  Cn  k
)  =  ( ( J  tX  II )  Cn  K ) )
83unieqd 4446 . . . . . . . . 9  |-  ( (
ph  /\  ( j  =  J  /\  k  =  K ) )  ->  U. j  =  U. J )
9 ishtpy.1 . . . . . . . . . . 11  |-  ( ph  ->  J  e.  (TopOn `  X ) )
10 toponuni 20719 . . . . . . . . . . 11  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
119, 10syl 17 . . . . . . . . . 10  |-  ( ph  ->  X  =  U. J
)
1211adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  ( j  =  J  /\  k  =  K ) )  ->  X  =  U. J )
138, 12eqtr4d 2659 . . . . . . . 8  |-  ( (
ph  /\  ( j  =  J  /\  k  =  K ) )  ->  U. j  =  X
)
1413raleqdv 3144 . . . . . . 7  |-  ( (
ph  /\  ( j  =  J  /\  k  =  K ) )  -> 
( A. s  e. 
U. j ( ( s h 0 )  =  ( f `  s )  /\  (
s h 1 )  =  ( g `  s ) )  <->  A. s  e.  X  ( (
s h 0 )  =  ( f `  s )  /\  (
s h 1 )  =  ( g `  s ) ) ) )
157, 14rabeqbidv 3195 . . . . . 6  |-  ( (
ph  /\  ( j  =  J  /\  k  =  K ) )  ->  { h  e.  (
( j  tX  II )  Cn  k )  | 
A. s  e.  U. j ( ( s h 0 )  =  ( f `  s
)  /\  ( s
h 1 )  =  ( g `  s
) ) }  =  { h  e.  (
( J  tX  II )  Cn  K )  | 
A. s  e.  X  ( ( s h 0 )  =  ( f `  s )  /\  ( s h 1 )  =  ( g `  s ) ) } )
165, 5, 15mpt2eq123dv 6717 . . . . 5  |-  ( (
ph  /\  ( j  =  J  /\  k  =  K ) )  -> 
( f  e.  ( j  Cn  k ) ,  g  e.  ( j  Cn  k ) 
|->  { h  e.  ( ( j  tX  II )  Cn  k )  | 
A. s  e.  U. j ( ( s h 0 )  =  ( f `  s
)  /\  ( s
h 1 )  =  ( g `  s
) ) } )  =  ( f  e.  ( J  Cn  K
) ,  g  e.  ( J  Cn  K
)  |->  { h  e.  ( ( J  tX  II )  Cn  K
)  |  A. s  e.  X  ( (
s h 0 )  =  ( f `  s )  /\  (
s h 1 )  =  ( g `  s ) ) } ) )
17 topontop 20718 . . . . . 6  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
189, 17syl 17 . . . . 5  |-  ( ph  ->  J  e.  Top )
19 ishtpy.3 . . . . . 6  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
20 cntop2 21045 . . . . . 6  |-  ( F  e.  ( J  Cn  K )  ->  K  e.  Top )
2119, 20syl 17 . . . . 5  |-  ( ph  ->  K  e.  Top )
22 ssrab2 3687 . . . . . . . . . 10  |-  { h  e.  ( ( J  tX  II )  Cn  K
)  |  A. s  e.  X  ( (
s h 0 )  =  ( f `  s )  /\  (
s h 1 )  =  ( g `  s ) ) } 
C_  ( ( J 
tX  II )  Cn  K )
23 ovex 6678 . . . . . . . . . . 11  |-  ( ( J  tX  II )  Cn  K )  e. 
_V
2423elpw2 4828 . . . . . . . . . 10  |-  ( { h  e.  ( ( J  tX  II )  Cn  K )  | 
A. s  e.  X  ( ( s h 0 )  =  ( f `  s )  /\  ( s h 1 )  =  ( g `  s ) ) }  e.  ~P ( ( J  tX  II )  Cn  K
)  <->  { h  e.  ( ( J  tX  II )  Cn  K )  | 
A. s  e.  X  ( ( s h 0 )  =  ( f `  s )  /\  ( s h 1 )  =  ( g `  s ) ) }  C_  (
( J  tX  II )  Cn  K ) )
2522, 24mpbir 221 . . . . . . . . 9  |-  { h  e.  ( ( J  tX  II )  Cn  K
)  |  A. s  e.  X  ( (
s h 0 )  =  ( f `  s )  /\  (
s h 1 )  =  ( g `  s ) ) }  e.  ~P ( ( J  tX  II )  Cn  K )
2625rgen2w 2925 . . . . . . . 8  |-  A. f  e.  ( J  Cn  K
) A. g  e.  ( J  Cn  K
) { h  e.  ( ( J  tX  II )  Cn  K
)  |  A. s  e.  X  ( (
s h 0 )  =  ( f `  s )  /\  (
s h 1 )  =  ( g `  s ) ) }  e.  ~P ( ( J  tX  II )  Cn  K )
27 eqid 2622 . . . . . . . . 9  |-  ( f  e.  ( J  Cn  K ) ,  g  e.  ( J  Cn  K )  |->  { h  e.  ( ( J  tX  II )  Cn  K
)  |  A. s  e.  X  ( (
s h 0 )  =  ( f `  s )  /\  (
s h 1 )  =  ( g `  s ) ) } )  =  ( f  e.  ( J  Cn  K ) ,  g  e.  ( J  Cn  K )  |->  { h  e.  ( ( J  tX  II )  Cn  K
)  |  A. s  e.  X  ( (
s h 0 )  =  ( f `  s )  /\  (
s h 1 )  =  ( g `  s ) ) } )
2827fmpt2 7237 . . . . . . . 8  |-  ( A. f  e.  ( J  Cn  K ) A. g  e.  ( J  Cn  K
) { h  e.  ( ( J  tX  II )  Cn  K
)  |  A. s  e.  X  ( (
s h 0 )  =  ( f `  s )  /\  (
s h 1 )  =  ( g `  s ) ) }  e.  ~P ( ( J  tX  II )  Cn  K )  <->  ( f  e.  ( J  Cn  K
) ,  g  e.  ( J  Cn  K
)  |->  { h  e.  ( ( J  tX  II )  Cn  K
)  |  A. s  e.  X  ( (
s h 0 )  =  ( f `  s )  /\  (
s h 1 )  =  ( g `  s ) ) } ) : ( ( J  Cn  K )  X.  ( J  Cn  K ) ) --> ~P ( ( J  tX  II )  Cn  K
) )
2926, 28mpbi 220 . . . . . . 7  |-  ( f  e.  ( J  Cn  K ) ,  g  e.  ( J  Cn  K )  |->  { h  e.  ( ( J  tX  II )  Cn  K
)  |  A. s  e.  X  ( (
s h 0 )  =  ( f `  s )  /\  (
s h 1 )  =  ( g `  s ) ) } ) : ( ( J  Cn  K )  X.  ( J  Cn  K ) ) --> ~P ( ( J  tX  II )  Cn  K
)
30 ovex 6678 . . . . . . . 8  |-  ( J  Cn  K )  e. 
_V
3130, 30xpex 6962 . . . . . . 7  |-  ( ( J  Cn  K )  X.  ( J  Cn  K ) )  e. 
_V
3223pwex 4848 . . . . . . 7  |-  ~P (
( J  tX  II )  Cn  K )  e. 
_V
33 fex2 7121 . . . . . . 7  |-  ( ( ( f  e.  ( J  Cn  K ) ,  g  e.  ( J  Cn  K ) 
|->  { h  e.  ( ( J  tX  II )  Cn  K )  | 
A. s  e.  X  ( ( s h 0 )  =  ( f `  s )  /\  ( s h 1 )  =  ( g `  s ) ) } ) : ( ( J  Cn  K )  X.  ( J  Cn  K ) ) --> ~P ( ( J 
tX  II )  Cn  K )  /\  (
( J  Cn  K
)  X.  ( J  Cn  K ) )  e.  _V  /\  ~P ( ( J  tX  II )  Cn  K
)  e.  _V )  ->  ( f  e.  ( J  Cn  K ) ,  g  e.  ( J  Cn  K ) 
|->  { h  e.  ( ( J  tX  II )  Cn  K )  | 
A. s  e.  X  ( ( s h 0 )  =  ( f `  s )  /\  ( s h 1 )  =  ( g `  s ) ) } )  e. 
_V )
3429, 31, 32, 33mp3an 1424 . . . . . 6  |-  ( f  e.  ( J  Cn  K ) ,  g  e.  ( J  Cn  K )  |->  { h  e.  ( ( J  tX  II )  Cn  K
)  |  A. s  e.  X  ( (
s h 0 )  =  ( f `  s )  /\  (
s h 1 )  =  ( g `  s ) ) } )  e.  _V
3534a1i 11 . . . . 5  |-  ( ph  ->  ( f  e.  ( J  Cn  K ) ,  g  e.  ( J  Cn  K ) 
|->  { h  e.  ( ( J  tX  II )  Cn  K )  | 
A. s  e.  X  ( ( s h 0 )  =  ( f `  s )  /\  ( s h 1 )  =  ( g `  s ) ) } )  e. 
_V )
362, 16, 18, 21, 35ovmpt2d 6788 . . . 4  |-  ( ph  ->  ( J Htpy  K )  =  ( f  e.  ( J  Cn  K
) ,  g  e.  ( J  Cn  K
)  |->  { h  e.  ( ( J  tX  II )  Cn  K
)  |  A. s  e.  X  ( (
s h 0 )  =  ( f `  s )  /\  (
s h 1 )  =  ( g `  s ) ) } ) )
37 fveq1 6190 . . . . . . . . 9  |-  ( f  =  F  ->  (
f `  s )  =  ( F `  s ) )
3837eqeq2d 2632 . . . . . . . 8  |-  ( f  =  F  ->  (
( s h 0 )  =  ( f `
 s )  <->  ( s
h 0 )  =  ( F `  s
) ) )
39 fveq1 6190 . . . . . . . . 9  |-  ( g  =  G  ->  (
g `  s )  =  ( G `  s ) )
4039eqeq2d 2632 . . . . . . . 8  |-  ( g  =  G  ->  (
( s h 1 )  =  ( g `
 s )  <->  ( s
h 1 )  =  ( G `  s
) ) )
4138, 40bi2anan9 917 . . . . . . 7  |-  ( ( f  =  F  /\  g  =  G )  ->  ( ( ( s h 0 )  =  ( f `  s
)  /\  ( s
h 1 )  =  ( g `  s
) )  <->  ( (
s h 0 )  =  ( F `  s )  /\  (
s h 1 )  =  ( G `  s ) ) ) )
4241adantl 482 . . . . . 6  |-  ( (
ph  /\  ( f  =  F  /\  g  =  G ) )  -> 
( ( ( s h 0 )  =  ( f `  s
)  /\  ( s
h 1 )  =  ( g `  s
) )  <->  ( (
s h 0 )  =  ( F `  s )  /\  (
s h 1 )  =  ( G `  s ) ) ) )
4342ralbidv 2986 . . . . 5  |-  ( (
ph  /\  ( f  =  F  /\  g  =  G ) )  -> 
( A. s  e.  X  ( ( s h 0 )  =  ( f `  s
)  /\  ( s
h 1 )  =  ( g `  s
) )  <->  A. s  e.  X  ( (
s h 0 )  =  ( F `  s )  /\  (
s h 1 )  =  ( G `  s ) ) ) )
4443rabbidv 3189 . . . 4  |-  ( (
ph  /\  ( f  =  F  /\  g  =  G ) )  ->  { h  e.  (
( J  tX  II )  Cn  K )  | 
A. s  e.  X  ( ( s h 0 )  =  ( f `  s )  /\  ( s h 1 )  =  ( g `  s ) ) }  =  {
h  e.  ( ( J  tX  II )  Cn  K )  | 
A. s  e.  X  ( ( s h 0 )  =  ( F `  s )  /\  ( s h 1 )  =  ( G `  s ) ) } )
45 ishtpy.4 . . . 4  |-  ( ph  ->  G  e.  ( J  Cn  K ) )
4623rabex 4813 . . . . 5  |-  { h  e.  ( ( J  tX  II )  Cn  K
)  |  A. s  e.  X  ( (
s h 0 )  =  ( F `  s )  /\  (
s h 1 )  =  ( G `  s ) ) }  e.  _V
4746a1i 11 . . . 4  |-  ( ph  ->  { h  e.  ( ( J  tX  II )  Cn  K )  | 
A. s  e.  X  ( ( s h 0 )  =  ( F `  s )  /\  ( s h 1 )  =  ( G `  s ) ) }  e.  _V )
4836, 44, 19, 45, 47ovmpt2d 6788 . . 3  |-  ( ph  ->  ( F ( J Htpy 
K ) G )  =  { h  e.  ( ( J  tX  II )  Cn  K
)  |  A. s  e.  X  ( (
s h 0 )  =  ( F `  s )  /\  (
s h 1 )  =  ( G `  s ) ) } )
4948eleq2d 2687 . 2  |-  ( ph  ->  ( H  e.  ( F ( J Htpy  K
) G )  <->  H  e.  { h  e.  ( ( J  tX  II )  Cn  K )  | 
A. s  e.  X  ( ( s h 0 )  =  ( F `  s )  /\  ( s h 1 )  =  ( G `  s ) ) } ) )
50 oveq 6656 . . . . . 6  |-  ( h  =  H  ->  (
s h 0 )  =  ( s H 0 ) )
5150eqeq1d 2624 . . . . 5  |-  ( h  =  H  ->  (
( s h 0 )  =  ( F `
 s )  <->  ( s H 0 )  =  ( F `  s
) ) )
52 oveq 6656 . . . . . 6  |-  ( h  =  H  ->  (
s h 1 )  =  ( s H 1 ) )
5352eqeq1d 2624 . . . . 5  |-  ( h  =  H  ->  (
( s h 1 )  =  ( G `
 s )  <->  ( s H 1 )  =  ( G `  s
) ) )
5451, 53anbi12d 747 . . . 4  |-  ( h  =  H  ->  (
( ( s h 0 )  =  ( F `  s )  /\  ( s h 1 )  =  ( G `  s ) )  <->  ( ( s H 0 )  =  ( F `  s
)  /\  ( s H 1 )  =  ( G `  s
) ) ) )
5554ralbidv 2986 . . 3  |-  ( h  =  H  ->  ( A. s  e.  X  ( ( s h 0 )  =  ( F `  s )  /\  ( s h 1 )  =  ( G `  s ) )  <->  A. s  e.  X  ( ( s H 0 )  =  ( F `  s )  /\  ( s H 1 )  =  ( G `  s ) ) ) )
5655elrab 3363 . 2  |-  ( H  e.  { h  e.  ( ( J  tX  II )  Cn  K
)  |  A. s  e.  X  ( (
s h 0 )  =  ( F `  s )  /\  (
s h 1 )  =  ( G `  s ) ) }  <-> 
( H  e.  ( ( J  tX  II )  Cn  K )  /\  A. s  e.  X  ( ( s H 0 )  =  ( F `
 s )  /\  ( s H 1 )  =  ( G `
 s ) ) ) )
5749, 56syl6bb 276 1  |-  ( ph  ->  ( H  e.  ( F ( J Htpy  K
) G )  <->  ( H  e.  ( ( J  tX  II )  Cn  K
)  /\  A. s  e.  X  ( (
s H 0 )  =  ( F `  s )  /\  (
s H 1 )  =  ( G `  s ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916   _Vcvv 3200    C_ wss 3574   ~Pcpw 4158   U.cuni 4436    X. cxp 5112   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   0cc0 9936   1c1 9937   Topctop 20698  TopOnctopon 20715    Cn ccn 21028    tX ctx 21363   IIcii 22678   Htpy chtpy 22766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-top 20699  df-topon 20716  df-cn 21031  df-htpy 22769
This theorem is referenced by:  htpycn  22772  htpyi  22773  ishtpyd  22774
  Copyright terms: Public domain W3C validator