MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isi1f Structured version   Visualization version   Unicode version

Theorem isi1f 23441
Description: The predicate " F is a simple function". A simple function is a finite nonnegative linear combination of indicator functions for finitely measurable sets. We use the idiom  F  e.  dom  S.1 to represent this concept because  S.1 is the first preparation function for our final definition  S. (see df-itg 23392); unlike that operator, which can integrate any function, this operator can only integrate simple functions. (Contributed by Mario Carneiro, 18-Jun-2014.)
Assertion
Ref Expression
isi1f  |-  ( F  e.  dom  S.1  <->  ( F  e. MblFn  /\  ( F : RR
--> RR  /\  ran  F  e.  Fin  /\  ( vol `  ( `' F "
( RR  \  {
0 } ) ) )  e.  RR ) ) )

Proof of Theorem isi1f
Dummy variables  f 
g  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 feq1 6026 . . 3  |-  ( g  =  F  ->  (
g : RR --> RR  <->  F : RR
--> RR ) )
2 rneq 5351 . . . 4  |-  ( g  =  F  ->  ran  g  =  ran  F )
32eleq1d 2686 . . 3  |-  ( g  =  F  ->  ( ran  g  e.  Fin  <->  ran  F  e.  Fin ) )
4 cnveq 5296 . . . . . 6  |-  ( g  =  F  ->  `' g  =  `' F
)
54imaeq1d 5465 . . . . 5  |-  ( g  =  F  ->  ( `' g " ( RR  \  { 0 } ) )  =  ( `' F " ( RR 
\  { 0 } ) ) )
65fveq2d 6195 . . . 4  |-  ( g  =  F  ->  ( vol `  ( `' g
" ( RR  \  { 0 } ) ) )  =  ( vol `  ( `' F " ( RR 
\  { 0 } ) ) ) )
76eleq1d 2686 . . 3  |-  ( g  =  F  ->  (
( vol `  ( `' g " ( RR  \  { 0 } ) ) )  e.  RR  <->  ( vol `  ( `' F " ( RR 
\  { 0 } ) ) )  e.  RR ) )
81, 3, 73anbi123d 1399 . 2  |-  ( g  =  F  ->  (
( g : RR --> RR  /\  ran  g  e. 
Fin  /\  ( vol `  ( `' g "
( RR  \  {
0 } ) ) )  e.  RR )  <-> 
( F : RR --> RR  /\  ran  F  e. 
Fin  /\  ( vol `  ( `' F "
( RR  \  {
0 } ) ) )  e.  RR ) ) )
9 sumex 14418 . . 3  |-  sum_ x  e.  ( ran  f  \  { 0 } ) ( x  x.  ( vol `  ( `' f
" { x }
) ) )  e. 
_V
10 df-itg1 23389 . . 3  |-  S.1  =  ( f  e.  {
g  e. MblFn  |  (
g : RR --> RR  /\  ran  g  e.  Fin  /\  ( vol `  ( `' g " ( RR  \  { 0 } ) ) )  e.  RR ) }  |->  sum_
x  e.  ( ran  f  \  { 0 } ) ( x  x.  ( vol `  ( `' f " {
x } ) ) ) )
119, 10dmmpti 6023 . 2  |-  dom  S.1  =  { g  e. MblFn  | 
( g : RR --> RR  /\  ran  g  e. 
Fin  /\  ( vol `  ( `' g "
( RR  \  {
0 } ) ) )  e.  RR ) }
128, 11elrab2 3366 1  |-  ( F  e.  dom  S.1  <->  ( F  e. MblFn  /\  ( F : RR
--> RR  /\  ran  F  e.  Fin  /\  ( vol `  ( `' F "
( RR  \  {
0 } ) ) )  e.  RR ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {crab 2916    \ cdif 3571   {csn 4177   `'ccnv 5113   dom cdm 5114   ran crn 5115   "cima 5117   -->wf 5884   ` cfv 5888  (class class class)co 6650   Fincfn 7955   RRcr 9935   0cc0 9936    x. cmul 9941   sum_csu 14416   volcvol 23232  MblFncmbf 23383   S.1citg1 23384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-sum 14417  df-itg1 23389
This theorem is referenced by:  i1fmbf  23442  i1ff  23443  i1frn  23444  i1fima2  23446  i1fd  23448
  Copyright terms: Public domain W3C validator