MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1fima2 Structured version   Visualization version   Unicode version

Theorem i1fima2 23446
Description: Any preimage of a simple function not containing zero has finite measure. (Contributed by Mario Carneiro, 26-Jun-2014.)
Assertion
Ref Expression
i1fima2  |-  ( ( F  e.  dom  S.1  /\ 
-.  0  e.  A
)  ->  ( vol `  ( `' F " A ) )  e.  RR )

Proof of Theorem i1fima2
StepHypRef Expression
1 i1fima 23445 . . . 4  |-  ( F  e.  dom  S.1  ->  ( `' F " A )  e.  dom  vol )
21adantr 481 . . 3  |-  ( ( F  e.  dom  S.1  /\ 
-.  0  e.  A
)  ->  ( `' F " A )  e. 
dom  vol )
3 mblvol 23298 . . 3  |-  ( ( `' F " A )  e.  dom  vol  ->  ( vol `  ( `' F " A ) )  =  ( vol* `  ( `' F " A ) ) )
42, 3syl 17 . 2  |-  ( ( F  e.  dom  S.1  /\ 
-.  0  e.  A
)  ->  ( vol `  ( `' F " A ) )  =  ( vol* `  ( `' F " A ) ) )
5 i1ff 23443 . . . . . . 7  |-  ( F  e.  dom  S.1  ->  F : RR --> RR )
65adantr 481 . . . . . 6  |-  ( ( F  e.  dom  S.1  /\ 
-.  0  e.  A
)  ->  F : RR
--> RR )
7 ffun 6048 . . . . . 6  |-  ( F : RR --> RR  ->  Fun 
F )
8 inpreima 6342 . . . . . 6  |-  ( Fun 
F  ->  ( `' F " ( A  i^i  ran 
F ) )  =  ( ( `' F " A )  i^i  ( `' F " ran  F
) ) )
96, 7, 83syl 18 . . . . 5  |-  ( ( F  e.  dom  S.1  /\ 
-.  0  e.  A
)  ->  ( `' F " ( A  i^i  ran 
F ) )  =  ( ( `' F " A )  i^i  ( `' F " ran  F
) ) )
10 cnvimass 5485 . . . . . . 7  |-  ( `' F " A ) 
C_  dom  F
11 cnvimarndm 5486 . . . . . . 7  |-  ( `' F " ran  F
)  =  dom  F
1210, 11sseqtr4i 3638 . . . . . 6  |-  ( `' F " A ) 
C_  ( `' F " ran  F )
13 df-ss 3588 . . . . . 6  |-  ( ( `' F " A ) 
C_  ( `' F " ran  F )  <->  ( ( `' F " A )  i^i  ( `' F " ran  F ) )  =  ( `' F " A ) )
1412, 13mpbi 220 . . . . 5  |-  ( ( `' F " A )  i^i  ( `' F " ran  F ) )  =  ( `' F " A )
159, 14syl6req 2673 . . . 4  |-  ( ( F  e.  dom  S.1  /\ 
-.  0  e.  A
)  ->  ( `' F " A )  =  ( `' F "
( A  i^i  ran  F ) ) )
16 inss1 3833 . . . . . . . . . 10  |-  ( A  i^i  ran  F )  C_  A
1716sseli 3599 . . . . . . . . 9  |-  ( 0  e.  ( A  i^i  ran 
F )  ->  0  e.  A )
1817con3i 150 . . . . . . . 8  |-  ( -.  0  e.  A  ->  -.  0  e.  ( A  i^i  ran  F )
)
1918adantl 482 . . . . . . 7  |-  ( ( F  e.  dom  S.1  /\ 
-.  0  e.  A
)  ->  -.  0  e.  ( A  i^i  ran  F ) )
20 disjsn 4246 . . . . . . 7  |-  ( ( ( A  i^i  ran  F )  i^i  { 0 } )  =  (/)  <->  -.  0  e.  ( A  i^i  ran  F ) )
2119, 20sylibr 224 . . . . . 6  |-  ( ( F  e.  dom  S.1  /\ 
-.  0  e.  A
)  ->  ( ( A  i^i  ran  F )  i^i  { 0 } )  =  (/) )
22 inss2 3834 . . . . . . . . 9  |-  ( A  i^i  ran  F )  C_ 
ran  F
23 frn 6053 . . . . . . . . . 10  |-  ( F : RR --> RR  ->  ran 
F  C_  RR )
245, 23syl 17 . . . . . . . . 9  |-  ( F  e.  dom  S.1  ->  ran 
F  C_  RR )
2522, 24syl5ss 3614 . . . . . . . 8  |-  ( F  e.  dom  S.1  ->  ( A  i^i  ran  F
)  C_  RR )
2625adantr 481 . . . . . . 7  |-  ( ( F  e.  dom  S.1  /\ 
-.  0  e.  A
)  ->  ( A  i^i  ran  F )  C_  RR )
27 reldisj 4020 . . . . . . 7  |-  ( ( A  i^i  ran  F
)  C_  RR  ->  ( ( ( A  i^i  ran 
F )  i^i  {
0 } )  =  (/) 
<->  ( A  i^i  ran  F )  C_  ( RR  \  { 0 } ) ) )
2826, 27syl 17 . . . . . 6  |-  ( ( F  e.  dom  S.1  /\ 
-.  0  e.  A
)  ->  ( (
( A  i^i  ran  F )  i^i  { 0 } )  =  (/)  <->  ( A  i^i  ran  F )  C_  ( RR  \  {
0 } ) ) )
2921, 28mpbid 222 . . . . 5  |-  ( ( F  e.  dom  S.1  /\ 
-.  0  e.  A
)  ->  ( A  i^i  ran  F )  C_  ( RR  \  { 0 } ) )
30 imass2 5501 . . . . 5  |-  ( ( A  i^i  ran  F
)  C_  ( RR  \  { 0 } )  ->  ( `' F " ( A  i^i  ran  F ) )  C_  ( `' F " ( RR 
\  { 0 } ) ) )
3129, 30syl 17 . . . 4  |-  ( ( F  e.  dom  S.1  /\ 
-.  0  e.  A
)  ->  ( `' F " ( A  i^i  ran 
F ) )  C_  ( `' F " ( RR 
\  { 0 } ) ) )
3215, 31eqsstrd 3639 . . 3  |-  ( ( F  e.  dom  S.1  /\ 
-.  0  e.  A
)  ->  ( `' F " A )  C_  ( `' F " ( RR 
\  { 0 } ) ) )
33 i1fima 23445 . . . . 5  |-  ( F  e.  dom  S.1  ->  ( `' F " ( RR 
\  { 0 } ) )  e.  dom  vol )
3433adantr 481 . . . 4  |-  ( ( F  e.  dom  S.1  /\ 
-.  0  e.  A
)  ->  ( `' F " ( RR  \  { 0 } ) )  e.  dom  vol )
35 mblss 23299 . . . 4  |-  ( ( `' F " ( RR 
\  { 0 } ) )  e.  dom  vol 
->  ( `' F "
( RR  \  {
0 } ) ) 
C_  RR )
3634, 35syl 17 . . 3  |-  ( ( F  e.  dom  S.1  /\ 
-.  0  e.  A
)  ->  ( `' F " ( RR  \  { 0 } ) )  C_  RR )
37 mblvol 23298 . . . . 5  |-  ( ( `' F " ( RR 
\  { 0 } ) )  e.  dom  vol 
->  ( vol `  ( `' F " ( RR 
\  { 0 } ) ) )  =  ( vol* `  ( `' F " ( RR 
\  { 0 } ) ) ) )
3834, 37syl 17 . . . 4  |-  ( ( F  e.  dom  S.1  /\ 
-.  0  e.  A
)  ->  ( vol `  ( `' F "
( RR  \  {
0 } ) ) )  =  ( vol* `  ( `' F " ( RR  \  { 0 } ) ) ) )
39 isi1f 23441 . . . . . . 7  |-  ( F  e.  dom  S.1  <->  ( F  e. MblFn  /\  ( F : RR
--> RR  /\  ran  F  e.  Fin  /\  ( vol `  ( `' F "
( RR  \  {
0 } ) ) )  e.  RR ) ) )
4039simprbi 480 . . . . . 6  |-  ( F  e.  dom  S.1  ->  ( F : RR --> RR  /\  ran  F  e.  Fin  /\  ( vol `  ( `' F " ( RR 
\  { 0 } ) ) )  e.  RR ) )
4140simp3d 1075 . . . . 5  |-  ( F  e.  dom  S.1  ->  ( vol `  ( `' F " ( RR 
\  { 0 } ) ) )  e.  RR )
4241adantr 481 . . . 4  |-  ( ( F  e.  dom  S.1  /\ 
-.  0  e.  A
)  ->  ( vol `  ( `' F "
( RR  \  {
0 } ) ) )  e.  RR )
4338, 42eqeltrrd 2702 . . 3  |-  ( ( F  e.  dom  S.1  /\ 
-.  0  e.  A
)  ->  ( vol* `  ( `' F " ( RR  \  {
0 } ) ) )  e.  RR )
44 ovolsscl 23254 . . 3  |-  ( ( ( `' F " A )  C_  ( `' F " ( RR 
\  { 0 } ) )  /\  ( `' F " ( RR 
\  { 0 } ) )  C_  RR  /\  ( vol* `  ( `' F " ( RR 
\  { 0 } ) ) )  e.  RR )  ->  ( vol* `  ( `' F " A ) )  e.  RR )
4532, 36, 43, 44syl3anc 1326 . 2  |-  ( ( F  e.  dom  S.1  /\ 
-.  0  e.  A
)  ->  ( vol* `  ( `' F " A ) )  e.  RR )
464, 45eqeltrd 2701 1  |-  ( ( F  e.  dom  S.1  /\ 
-.  0  e.  A
)  ->  ( vol `  ( `' F " A ) )  e.  RR )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    \ cdif 3571    i^i cin 3573    C_ wss 3574   (/)c0 3915   {csn 4177   `'ccnv 5113   dom cdm 5114   ran crn 5115   "cima 5117   Fun wfun 5882   -->wf 5884   ` cfv 5888   Fincfn 7955   RRcr 9935   0cc0 9936   vol*covol 23231   volcvol 23232  MblFncmbf 23383   S.1citg1 23384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xadd 11947  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-xmet 19739  df-met 19740  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389
This theorem is referenced by:  i1fima2sn  23447  i1f0rn  23449  itg2addnclem  33461  itg2addnclem2  33462  ftc1anclem3  33487
  Copyright terms: Public domain W3C validator