![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > i1ff | Structured version Visualization version Unicode version |
Description: A simple function is a function on the reals. (Contributed by Mario Carneiro, 26-Jun-2014.) |
Ref | Expression |
---|---|
i1ff |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isi1f 23441 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | simprbi 480 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | simp1d 1073 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-sum 14417 df-itg1 23389 |
This theorem is referenced by: i1fima 23445 i1fima2 23446 i1f0rn 23449 itg1val2 23451 itg1cl 23452 itg1ge0 23453 i1faddlem 23460 i1fmullem 23461 i1fadd 23462 i1fmul 23463 itg1addlem4 23466 itg1addlem5 23467 i1fmulclem 23469 i1fmulc 23470 itg1mulc 23471 i1fres 23472 i1fpos 23473 i1fposd 23474 i1fsub 23475 itg1sub 23476 itg10a 23477 itg1ge0a 23478 itg1lea 23479 itg1le 23480 itg1climres 23481 mbfi1fseqlem5 23486 mbfi1fseqlem6 23487 mbfi1flimlem 23489 mbfmullem2 23491 itg2itg1 23503 itg20 23504 itg2le 23506 itg2seq 23509 itg2uba 23510 itg2lea 23511 itg2mulclem 23513 itg2splitlem 23515 itg2split 23516 itg2monolem1 23517 itg2i1fseqle 23521 itg2i1fseq 23522 itg2addlem 23525 i1fibl 23574 itgitg1 23575 itg2addnclem 33461 itg2addnclem2 33462 itg2addnclem3 33463 itg2addnc 33464 ftc1anclem3 33487 ftc1anclem4 33488 ftc1anclem5 33489 ftc1anclem6 33490 ftc1anclem7 33491 ftc1anclem8 33492 ftc1anc 33493 |
Copyright terms: Public domain | W3C validator |