MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isirred Structured version   Visualization version   Unicode version

Theorem isirred 18699
Description: An irreducible element of a ring is a non-unit that is not the product of two non-units. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
irred.1  |-  B  =  ( Base `  R
)
irred.2  |-  U  =  (Unit `  R )
irred.3  |-  I  =  (Irred `  R )
irred.4  |-  N  =  ( B  \  U
)
irred.5  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
isirred  |-  ( X  e.  I  <->  ( X  e.  N  /\  A. x  e.  N  A. y  e.  N  ( x  .x.  y )  =/=  X
) )
Distinct variable groups:    x, y, N    x, R, y    x, X, y
Allowed substitution hints:    B( x, y)    .x. ( x, y)    U( x, y)    I( x, y)

Proof of Theorem isirred
Dummy variables  r 
b  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvdm 6220 . . . 4  |-  ( X  e.  (Irred `  R
)  ->  R  e.  dom Irred )
2 irred.3 . . . 4  |-  I  =  (Irred `  R )
31, 2eleq2s 2719 . . 3  |-  ( X  e.  I  ->  R  e.  dom Irred )
4 elex 3212 . . 3  |-  ( R  e.  dom Irred  ->  R  e. 
_V )
53, 4syl 17 . 2  |-  ( X  e.  I  ->  R  e.  _V )
6 eldifi 3732 . . . . . 6  |-  ( X  e.  ( B  \  U )  ->  X  e.  B )
7 irred.4 . . . . . 6  |-  N  =  ( B  \  U
)
86, 7eleq2s 2719 . . . . 5  |-  ( X  e.  N  ->  X  e.  B )
9 irred.1 . . . . 5  |-  B  =  ( Base `  R
)
108, 9syl6eleq 2711 . . . 4  |-  ( X  e.  N  ->  X  e.  ( Base `  R
) )
1110elfvexd 6222 . . 3  |-  ( X  e.  N  ->  R  e.  _V )
1211adantr 481 . 2  |-  ( ( X  e.  N  /\  A. x  e.  N  A. y  e.  N  (
x  .x.  y )  =/=  X )  ->  R  e.  _V )
13 fvex 6201 . . . . . . . 8  |-  ( Base `  r )  e.  _V
14 difexg 4808 . . . . . . . 8  |-  ( (
Base `  r )  e.  _V  ->  ( ( Base `  r )  \ 
(Unit `  r )
)  e.  _V )
1513, 14mp1i 13 . . . . . . 7  |-  ( r  =  R  ->  (
( Base `  r )  \  (Unit `  r )
)  e.  _V )
16 simpr 477 . . . . . . . . 9  |-  ( ( r  =  R  /\  b  =  ( ( Base `  r )  \ 
(Unit `  r )
) )  ->  b  =  ( ( Base `  r )  \  (Unit `  r ) ) )
17 simpl 473 . . . . . . . . . . . . 13  |-  ( ( r  =  R  /\  b  =  ( ( Base `  r )  \ 
(Unit `  r )
) )  ->  r  =  R )
1817fveq2d 6195 . . . . . . . . . . . 12  |-  ( ( r  =  R  /\  b  =  ( ( Base `  r )  \ 
(Unit `  r )
) )  ->  ( Base `  r )  =  ( Base `  R
) )
1918, 9syl6eqr 2674 . . . . . . . . . . 11  |-  ( ( r  =  R  /\  b  =  ( ( Base `  r )  \ 
(Unit `  r )
) )  ->  ( Base `  r )  =  B )
2017fveq2d 6195 . . . . . . . . . . . 12  |-  ( ( r  =  R  /\  b  =  ( ( Base `  r )  \ 
(Unit `  r )
) )  ->  (Unit `  r )  =  (Unit `  R ) )
21 irred.2 . . . . . . . . . . . 12  |-  U  =  (Unit `  R )
2220, 21syl6eqr 2674 . . . . . . . . . . 11  |-  ( ( r  =  R  /\  b  =  ( ( Base `  r )  \ 
(Unit `  r )
) )  ->  (Unit `  r )  =  U )
2319, 22difeq12d 3729 . . . . . . . . . 10  |-  ( ( r  =  R  /\  b  =  ( ( Base `  r )  \ 
(Unit `  r )
) )  ->  (
( Base `  r )  \  (Unit `  r )
)  =  ( B 
\  U ) )
2423, 7syl6eqr 2674 . . . . . . . . 9  |-  ( ( r  =  R  /\  b  =  ( ( Base `  r )  \ 
(Unit `  r )
) )  ->  (
( Base `  r )  \  (Unit `  r )
)  =  N )
2516, 24eqtrd 2656 . . . . . . . 8  |-  ( ( r  =  R  /\  b  =  ( ( Base `  r )  \ 
(Unit `  r )
) )  ->  b  =  N )
2617fveq2d 6195 . . . . . . . . . . . . 13  |-  ( ( r  =  R  /\  b  =  ( ( Base `  r )  \ 
(Unit `  r )
) )  ->  ( .r `  r )  =  ( .r `  R
) )
27 irred.5 . . . . . . . . . . . . 13  |-  .x.  =  ( .r `  R )
2826, 27syl6eqr 2674 . . . . . . . . . . . 12  |-  ( ( r  =  R  /\  b  =  ( ( Base `  r )  \ 
(Unit `  r )
) )  ->  ( .r `  r )  = 
.x.  )
2928oveqd 6667 . . . . . . . . . . 11  |-  ( ( r  =  R  /\  b  =  ( ( Base `  r )  \ 
(Unit `  r )
) )  ->  (
x ( .r `  r ) y )  =  ( x  .x.  y ) )
3029neeq1d 2853 . . . . . . . . . 10  |-  ( ( r  =  R  /\  b  =  ( ( Base `  r )  \ 
(Unit `  r )
) )  ->  (
( x ( .r
`  r ) y )  =/=  z  <->  ( x  .x.  y )  =/=  z
) )
3125, 30raleqbidv 3152 . . . . . . . . 9  |-  ( ( r  =  R  /\  b  =  ( ( Base `  r )  \ 
(Unit `  r )
) )  ->  ( A. y  e.  b 
( x ( .r
`  r ) y )  =/=  z  <->  A. y  e.  N  ( x  .x.  y )  =/=  z
) )
3225, 31raleqbidv 3152 . . . . . . . 8  |-  ( ( r  =  R  /\  b  =  ( ( Base `  r )  \ 
(Unit `  r )
) )  ->  ( A. x  e.  b  A. y  e.  b 
( x ( .r
`  r ) y )  =/=  z  <->  A. x  e.  N  A. y  e.  N  ( x  .x.  y )  =/=  z
) )
3325, 32rabeqbidv 3195 . . . . . . 7  |-  ( ( r  =  R  /\  b  =  ( ( Base `  r )  \ 
(Unit `  r )
) )  ->  { z  e.  b  |  A. x  e.  b  A. y  e.  b  (
x ( .r `  r ) y )  =/=  z }  =  { z  e.  N  |  A. x  e.  N  A. y  e.  N  ( x  .x.  y )  =/=  z } )
3415, 33csbied 3560 . . . . . 6  |-  ( r  =  R  ->  [_ (
( Base `  r )  \  (Unit `  r )
)  /  b ]_ { z  e.  b  |  A. x  e.  b  A. y  e.  b  ( x ( .r `  r ) y )  =/=  z }  =  { z  e.  N  |  A. x  e.  N  A. y  e.  N  (
x  .x.  y )  =/=  z } )
35 df-irred 18643 . . . . . 6  |- Irred  =  ( r  e.  _V  |->  [_ ( ( Base `  r
)  \  (Unit `  r
) )  /  b ]_ { z  e.  b  |  A. x  e.  b  A. y  e.  b  ( x ( .r `  r ) y )  =/=  z } )
36 fvex 6201 . . . . . . . . . 10  |-  ( Base `  R )  e.  _V
379, 36eqeltri 2697 . . . . . . . . 9  |-  B  e. 
_V
38 difexg 4808 . . . . . . . . 9  |-  ( B  e.  _V  ->  ( B  \  U )  e. 
_V )
3937, 38ax-mp 5 . . . . . . . 8  |-  ( B 
\  U )  e. 
_V
407, 39eqeltri 2697 . . . . . . 7  |-  N  e. 
_V
4140rabex 4813 . . . . . 6  |-  { z  e.  N  |  A. x  e.  N  A. y  e.  N  (
x  .x.  y )  =/=  z }  e.  _V
4234, 35, 41fvmpt 6282 . . . . 5  |-  ( R  e.  _V  ->  (Irred `  R )  =  {
z  e.  N  |  A. x  e.  N  A. y  e.  N  ( x  .x.  y )  =/=  z } )
432, 42syl5eq 2668 . . . 4  |-  ( R  e.  _V  ->  I  =  { z  e.  N  |  A. x  e.  N  A. y  e.  N  ( x  .x.  y )  =/=  z } )
4443eleq2d 2687 . . 3  |-  ( R  e.  _V  ->  ( X  e.  I  <->  X  e.  { z  e.  N  |  A. x  e.  N  A. y  e.  N  ( x  .x.  y )  =/=  z } ) )
45 neeq2 2857 . . . . 5  |-  ( z  =  X  ->  (
( x  .x.  y
)  =/=  z  <->  ( x  .x.  y )  =/=  X
) )
46452ralbidv 2989 . . . 4  |-  ( z  =  X  ->  ( A. x  e.  N  A. y  e.  N  ( x  .x.  y )  =/=  z  <->  A. x  e.  N  A. y  e.  N  ( x  .x.  y )  =/=  X
) )
4746elrab 3363 . . 3  |-  ( X  e.  { z  e.  N  |  A. x  e.  N  A. y  e.  N  ( x  .x.  y )  =/=  z } 
<->  ( X  e.  N  /\  A. x  e.  N  A. y  e.  N  ( x  .x.  y )  =/=  X ) )
4844, 47syl6bb 276 . 2  |-  ( R  e.  _V  ->  ( X  e.  I  <->  ( X  e.  N  /\  A. x  e.  N  A. y  e.  N  ( x  .x.  y )  =/=  X
) ) )
495, 12, 48pm5.21nii 368 1  |-  ( X  e.  I  <->  ( X  e.  N  /\  A. x  e.  N  A. y  e.  N  ( x  .x.  y )  =/=  X
) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   {crab 2916   _Vcvv 3200   [_csb 3533    \ cdif 3571   dom cdm 5114   ` cfv 5888  (class class class)co 6650   Basecbs 15857   .rcmulr 15942  Unitcui 18639  Irredcir 18640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-irred 18643
This theorem is referenced by:  isnirred  18700  isirred2  18701  opprirred  18702
  Copyright terms: Public domain W3C validator