MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invrpropd Structured version   Visualization version   Unicode version

Theorem invrpropd 18698
Description: The ring inverse function depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.) (Revised by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
rngidpropd.1  |-  ( ph  ->  B  =  ( Base `  K ) )
rngidpropd.2  |-  ( ph  ->  B  =  ( Base `  L ) )
rngidpropd.3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
Assertion
Ref Expression
invrpropd  |-  ( ph  ->  ( invr `  K
)  =  ( invr `  L ) )
Distinct variable groups:    x, y, B    x, K, y    x, L, y    ph, x, y

Proof of Theorem invrpropd
StepHypRef Expression
1 eqid 2622 . . . . 5  |-  (Unit `  K )  =  (Unit `  K )
2 eqid 2622 . . . . 5  |-  ( (mulGrp `  K )s  (Unit `  K )
)  =  ( (mulGrp `  K )s  (Unit `  K )
)
31, 2unitgrpbas 18666 . . . 4  |-  (Unit `  K )  =  (
Base `  ( (mulGrp `  K )s  (Unit `  K )
) )
43a1i 11 . . 3  |-  ( ph  ->  (Unit `  K )  =  ( Base `  (
(mulGrp `  K )s  (Unit `  K ) ) ) )
5 rngidpropd.1 . . . . 5  |-  ( ph  ->  B  =  ( Base `  K ) )
6 rngidpropd.2 . . . . 5  |-  ( ph  ->  B  =  ( Base `  L ) )
7 rngidpropd.3 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
85, 6, 7unitpropd 18697 . . . 4  |-  ( ph  ->  (Unit `  K )  =  (Unit `  L )
)
9 eqid 2622 . . . . 5  |-  (Unit `  L )  =  (Unit `  L )
10 eqid 2622 . . . . 5  |-  ( (mulGrp `  L )s  (Unit `  L )
)  =  ( (mulGrp `  L )s  (Unit `  L )
)
119, 10unitgrpbas 18666 . . . 4  |-  (Unit `  L )  =  (
Base `  ( (mulGrp `  L )s  (Unit `  L )
) )
128, 11syl6eq 2672 . . 3  |-  ( ph  ->  (Unit `  K )  =  ( Base `  (
(mulGrp `  L )s  (Unit `  L ) ) ) )
13 eqid 2622 . . . . . . . . 9  |-  ( Base `  K )  =  (
Base `  K )
1413, 1unitss 18660 . . . . . . . 8  |-  (Unit `  K )  C_  ( Base `  K )
1514, 5syl5sseqr 3654 . . . . . . 7  |-  ( ph  ->  (Unit `  K )  C_  B )
1615sselda 3603 . . . . . 6  |-  ( (
ph  /\  x  e.  (Unit `  K ) )  ->  x  e.  B
)
1715sselda 3603 . . . . . 6  |-  ( (
ph  /\  y  e.  (Unit `  K ) )  ->  y  e.  B
)
1816, 17anim12dan 882 . . . . 5  |-  ( (
ph  /\  ( x  e.  (Unit `  K )  /\  y  e.  (Unit `  K ) ) )  ->  ( x  e.  B  /\  y  e.  B ) )
1918, 7syldan 487 . . . 4  |-  ( (
ph  /\  ( x  e.  (Unit `  K )  /\  y  e.  (Unit `  K ) ) )  ->  ( x ( .r `  K ) y )  =  ( x ( .r `  L ) y ) )
20 fvex 6201 . . . . . 6  |-  (Unit `  K )  e.  _V
21 eqid 2622 . . . . . . . 8  |-  (mulGrp `  K )  =  (mulGrp `  K )
22 eqid 2622 . . . . . . . 8  |-  ( .r
`  K )  =  ( .r `  K
)
2321, 22mgpplusg 18493 . . . . . . 7  |-  ( .r
`  K )  =  ( +g  `  (mulGrp `  K ) )
242, 23ressplusg 15993 . . . . . 6  |-  ( (Unit `  K )  e.  _V  ->  ( .r `  K
)  =  ( +g  `  ( (mulGrp `  K
)s  (Unit `  K )
) ) )
2520, 24ax-mp 5 . . . . 5  |-  ( .r
`  K )  =  ( +g  `  (
(mulGrp `  K )s  (Unit `  K ) ) )
2625oveqi 6663 . . . 4  |-  ( x ( .r `  K
) y )  =  ( x ( +g  `  ( (mulGrp `  K
)s  (Unit `  K )
) ) y )
27 fvex 6201 . . . . . 6  |-  (Unit `  L )  e.  _V
28 eqid 2622 . . . . . . . 8  |-  (mulGrp `  L )  =  (mulGrp `  L )
29 eqid 2622 . . . . . . . 8  |-  ( .r
`  L )  =  ( .r `  L
)
3028, 29mgpplusg 18493 . . . . . . 7  |-  ( .r
`  L )  =  ( +g  `  (mulGrp `  L ) )
3110, 30ressplusg 15993 . . . . . 6  |-  ( (Unit `  L )  e.  _V  ->  ( .r `  L
)  =  ( +g  `  ( (mulGrp `  L
)s  (Unit `  L )
) ) )
3227, 31ax-mp 5 . . . . 5  |-  ( .r
`  L )  =  ( +g  `  (
(mulGrp `  L )s  (Unit `  L ) ) )
3332oveqi 6663 . . . 4  |-  ( x ( .r `  L
) y )  =  ( x ( +g  `  ( (mulGrp `  L
)s  (Unit `  L )
) ) y )
3419, 26, 333eqtr3g 2679 . . 3  |-  ( (
ph  /\  ( x  e.  (Unit `  K )  /\  y  e.  (Unit `  K ) ) )  ->  ( x ( +g  `  ( (mulGrp `  K )s  (Unit `  K )
) ) y )  =  ( x ( +g  `  ( (mulGrp `  L )s  (Unit `  L )
) ) y ) )
354, 12, 34grpinvpropd 17490 . 2  |-  ( ph  ->  ( invg `  ( (mulGrp `  K )s  (Unit `  K ) ) )  =  ( invg `  ( (mulGrp `  L
)s  (Unit `  L )
) ) )
36 eqid 2622 . . 3  |-  ( invr `  K )  =  (
invr `  K )
371, 2, 36invrfval 18673 . 2  |-  ( invr `  K )  =  ( invg `  (
(mulGrp `  K )s  (Unit `  K ) ) )
38 eqid 2622 . . 3  |-  ( invr `  L )  =  (
invr `  L )
399, 10, 38invrfval 18673 . 2  |-  ( invr `  L )  =  ( invg `  (
(mulGrp `  L )s  (Unit `  L ) ) )
4035, 37, 393eqtr4g 2681 1  |-  ( ph  ->  ( invr `  K
)  =  ( invr `  L ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   ` cfv 5888  (class class class)co 6650   Basecbs 15857   ↾s cress 15858   +g cplusg 15941   .rcmulr 15942   invgcminusg 17423  mulGrpcmgp 18489  Unitcui 18639   invrcinvr 18671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-0g 16102  df-minusg 17426  df-mgp 18490  df-ur 18502  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator