| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > islnoppd | Structured version Visualization version Unicode version | ||
| Description: Deduce that |
| Ref | Expression |
|---|---|
| hpg.p |
|
| hpg.d |
|
| hpg.i |
|
| hpg.o |
|
| islnoppd.a |
|
| islnoppd.b |
|
| islnoppd.c |
|
| islnoppd.1 |
|
| islnoppd.2 |
|
| islnoppd.3 |
|
| Ref | Expression |
|---|---|
| islnoppd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islnoppd.1 |
. . 3
| |
| 2 | islnoppd.2 |
. . 3
| |
| 3 | islnoppd.c |
. . . 4
| |
| 4 | simpr 477 |
. . . . 5
| |
| 5 | 4 | eleq1d 2686 |
. . . 4
|
| 6 | islnoppd.3 |
. . . 4
| |
| 7 | 3, 5, 6 | rspcedvd 3317 |
. . 3
|
| 8 | 1, 2, 7 | jca31 557 |
. 2
|
| 9 | hpg.p |
. . 3
| |
| 10 | hpg.d |
. . 3
| |
| 11 | hpg.i |
. . 3
| |
| 12 | hpg.o |
. . 3
| |
| 13 | islnoppd.a |
. . 3
| |
| 14 | islnoppd.b |
. . 3
| |
| 15 | 9, 10, 11, 12, 13, 14 | islnopp 25631 |
. 2
|
| 16 | 8, 15 | mpbird 247 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-iota 5851 df-fv 5896 df-ov 6653 |
| This theorem is referenced by: opphllem2 25640 outpasch 25647 |
| Copyright terms: Public domain | W3C validator |