MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islnopp Structured version   Visualization version   Unicode version

Theorem islnopp 25631
Description: The property for two points  A and  B to lie on the opposite sides of a set  D Definition 9.1 of [Schwabhauser] p. 67. (Contributed by Thierry Arnoux, 19-Dec-2019.)
Hypotheses
Ref Expression
hpg.p  |-  P  =  ( Base `  G
)
hpg.d  |-  .-  =  ( dist `  G )
hpg.i  |-  I  =  (Itv `  G )
hpg.o  |-  O  =  { <. a ,  b
>.  |  ( (
a  e.  ( P 
\  D )  /\  b  e.  ( P  \  D ) )  /\  E. t  e.  D  t  e.  ( a I b ) ) }
islnopp.a  |-  ( ph  ->  A  e.  P )
islnopp.b  |-  ( ph  ->  B  e.  P )
Assertion
Ref Expression
islnopp  |-  ( ph  ->  ( A O B  <-> 
( ( -.  A  e.  D  /\  -.  B  e.  D )  /\  E. t  e.  D  t  e.  ( A I B ) ) ) )
Distinct variable groups:    D, a,
b    I, a, b    P, a, b    t, A    t, B    t, a, b
Allowed substitution hints:    ph( t, a, b)    A( a, b)    B( a, b)    D( t)    P( t)    G( t, a, b)    I( t)    .- ( t, a, b)    O( t, a, b)

Proof of Theorem islnopp
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 islnopp.a . . 3  |-  ( ph  ->  A  e.  P )
2 islnopp.b . . 3  |-  ( ph  ->  B  e.  P )
3 eleq1 2689 . . . . . 6  |-  ( u  =  A  ->  (
u  e.  ( P 
\  D )  <->  A  e.  ( P  \  D ) ) )
43anbi1d 741 . . . . 5  |-  ( u  =  A  ->  (
( u  e.  ( P  \  D )  /\  v  e.  ( P  \  D ) )  <->  ( A  e.  ( P  \  D
)  /\  v  e.  ( P  \  D ) ) ) )
5 id 22 . . . . . . . 8  |-  ( u  =  A  ->  u  =  A )
65oveq1d 6665 . . . . . . 7  |-  ( u  =  A  ->  (
u I v )  =  ( A I v ) )
76eleq2d 2687 . . . . . 6  |-  ( u  =  A  ->  (
t  e.  ( u I v )  <->  t  e.  ( A I v ) ) )
87rexbidv 3052 . . . . 5  |-  ( u  =  A  ->  ( E. t  e.  D  t  e.  ( u I v )  <->  E. t  e.  D  t  e.  ( A I v ) ) )
94, 8anbi12d 747 . . . 4  |-  ( u  =  A  ->  (
( ( u  e.  ( P  \  D
)  /\  v  e.  ( P  \  D ) )  /\  E. t  e.  D  t  e.  ( u I v ) )  <->  ( ( A  e.  ( P  \  D )  /\  v  e.  ( P  \  D
) )  /\  E. t  e.  D  t  e.  ( A I v ) ) ) )
10 eleq1 2689 . . . . . 6  |-  ( v  =  B  ->  (
v  e.  ( P 
\  D )  <->  B  e.  ( P  \  D ) ) )
1110anbi2d 740 . . . . 5  |-  ( v  =  B  ->  (
( A  e.  ( P  \  D )  /\  v  e.  ( P  \  D ) )  <->  ( A  e.  ( P  \  D
)  /\  B  e.  ( P  \  D ) ) ) )
12 oveq2 6658 . . . . . . 7  |-  ( v  =  B  ->  ( A I v )  =  ( A I B ) )
1312eleq2d 2687 . . . . . 6  |-  ( v  =  B  ->  (
t  e.  ( A I v )  <->  t  e.  ( A I B ) ) )
1413rexbidv 3052 . . . . 5  |-  ( v  =  B  ->  ( E. t  e.  D  t  e.  ( A I v )  <->  E. t  e.  D  t  e.  ( A I B ) ) )
1511, 14anbi12d 747 . . . 4  |-  ( v  =  B  ->  (
( ( A  e.  ( P  \  D
)  /\  v  e.  ( P  \  D ) )  /\  E. t  e.  D  t  e.  ( A I v ) )  <->  ( ( A  e.  ( P  \  D )  /\  B  e.  ( P  \  D
) )  /\  E. t  e.  D  t  e.  ( A I B ) ) ) )
16 hpg.o . . . . 5  |-  O  =  { <. a ,  b
>.  |  ( (
a  e.  ( P 
\  D )  /\  b  e.  ( P  \  D ) )  /\  E. t  e.  D  t  e.  ( a I b ) ) }
17 simpl 473 . . . . . . . . 9  |-  ( ( a  =  u  /\  b  =  v )  ->  a  =  u )
18 eqidd 2623 . . . . . . . . 9  |-  ( ( a  =  u  /\  b  =  v )  ->  ( P  \  D
)  =  ( P 
\  D ) )
1917, 18eleq12d 2695 . . . . . . . 8  |-  ( ( a  =  u  /\  b  =  v )  ->  ( a  e.  ( P  \  D )  <-> 
u  e.  ( P 
\  D ) ) )
20 simpr 477 . . . . . . . . 9  |-  ( ( a  =  u  /\  b  =  v )  ->  b  =  v )
2120, 18eleq12d 2695 . . . . . . . 8  |-  ( ( a  =  u  /\  b  =  v )  ->  ( b  e.  ( P  \  D )  <-> 
v  e.  ( P 
\  D ) ) )
2219, 21anbi12d 747 . . . . . . 7  |-  ( ( a  =  u  /\  b  =  v )  ->  ( ( a  e.  ( P  \  D
)  /\  b  e.  ( P  \  D ) )  <->  ( u  e.  ( P  \  D
)  /\  v  e.  ( P  \  D ) ) ) )
23 oveq12 6659 . . . . . . . . 9  |-  ( ( a  =  u  /\  b  =  v )  ->  ( a I b )  =  ( u I v ) )
2423eleq2d 2687 . . . . . . . 8  |-  ( ( a  =  u  /\  b  =  v )  ->  ( t  e.  ( a I b )  <-> 
t  e.  ( u I v ) ) )
2524rexbidv 3052 . . . . . . 7  |-  ( ( a  =  u  /\  b  =  v )  ->  ( E. t  e.  D  t  e.  ( a I b )  <->  E. t  e.  D  t  e.  ( u I v ) ) )
2622, 25anbi12d 747 . . . . . 6  |-  ( ( a  =  u  /\  b  =  v )  ->  ( ( ( a  e.  ( P  \  D )  /\  b  e.  ( P  \  D
) )  /\  E. t  e.  D  t  e.  ( a I b ) )  <->  ( (
u  e.  ( P 
\  D )  /\  v  e.  ( P  \  D ) )  /\  E. t  e.  D  t  e.  ( u I v ) ) ) )
2726cbvopabv 4722 . . . . 5  |-  { <. a ,  b >.  |  ( ( a  e.  ( P  \  D )  /\  b  e.  ( P  \  D ) )  /\  E. t  e.  D  t  e.  ( a I b ) ) }  =  { <. u ,  v
>.  |  ( (
u  e.  ( P 
\  D )  /\  v  e.  ( P  \  D ) )  /\  E. t  e.  D  t  e.  ( u I v ) ) }
2816, 27eqtri 2644 . . . 4  |-  O  =  { <. u ,  v
>.  |  ( (
u  e.  ( P 
\  D )  /\  v  e.  ( P  \  D ) )  /\  E. t  e.  D  t  e.  ( u I v ) ) }
299, 15, 28brabg 4994 . . 3  |-  ( ( A  e.  P  /\  B  e.  P )  ->  ( A O B  <-> 
( ( A  e.  ( P  \  D
)  /\  B  e.  ( P  \  D ) )  /\  E. t  e.  D  t  e.  ( A I B ) ) ) )
301, 2, 29syl2anc 693 . 2  |-  ( ph  ->  ( A O B  <-> 
( ( A  e.  ( P  \  D
)  /\  B  e.  ( P  \  D ) )  /\  E. t  e.  D  t  e.  ( A I B ) ) ) )
311biantrurd 529 . . . . 5  |-  ( ph  ->  ( -.  A  e.  D  <->  ( A  e.  P  /\  -.  A  e.  D ) ) )
32 eldif 3584 . . . . 5  |-  ( A  e.  ( P  \  D )  <->  ( A  e.  P  /\  -.  A  e.  D ) )
3331, 32syl6bbr 278 . . . 4  |-  ( ph  ->  ( -.  A  e.  D  <->  A  e.  ( P  \  D ) ) )
342biantrurd 529 . . . . 5  |-  ( ph  ->  ( -.  B  e.  D  <->  ( B  e.  P  /\  -.  B  e.  D ) ) )
35 eldif 3584 . . . . 5  |-  ( B  e.  ( P  \  D )  <->  ( B  e.  P  /\  -.  B  e.  D ) )
3634, 35syl6bbr 278 . . . 4  |-  ( ph  ->  ( -.  B  e.  D  <->  B  e.  ( P  \  D ) ) )
3733, 36anbi12d 747 . . 3  |-  ( ph  ->  ( ( -.  A  e.  D  /\  -.  B  e.  D )  <->  ( A  e.  ( P  \  D
)  /\  B  e.  ( P  \  D ) ) ) )
3837anbi1d 741 . 2  |-  ( ph  ->  ( ( ( -.  A  e.  D  /\  -.  B  e.  D
)  /\  E. t  e.  D  t  e.  ( A I B ) )  <->  ( ( A  e.  ( P  \  D )  /\  B  e.  ( P  \  D
) )  /\  E. t  e.  D  t  e.  ( A I B ) ) ) )
3930, 38bitr4d 271 1  |-  ( ph  ->  ( A O B  <-> 
( ( -.  A  e.  D  /\  -.  B  e.  D )  /\  E. t  e.  D  t  e.  ( A I B ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913    \ cdif 3571   class class class wbr 4653   {copab 4712   ` cfv 5888  (class class class)co 6650   Basecbs 15857   distcds 15950  Itvcitv 25335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-iota 5851  df-fv 5896  df-ov 6653
This theorem is referenced by:  islnoppd  25632  oppne1  25633  oppne2  25634  oppne3  25635  oppcom  25636  oppnid  25638  opphllem1  25639  opphllem3  25641  opphllem4  25642  opphllem5  25643  opphllem6  25644  oppperpex  25645  outpasch  25647  lnopp2hpgb  25655  hpgerlem  25657  colopp  25661  colhp  25662  lmiopp  25694  trgcopyeulem  25697
  Copyright terms: Public domain W3C validator