| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > islnopp | Structured version Visualization version Unicode version | ||
| Description: The property for two
points |
| Ref | Expression |
|---|---|
| hpg.p |
|
| hpg.d |
|
| hpg.i |
|
| hpg.o |
|
| islnopp.a |
|
| islnopp.b |
|
| Ref | Expression |
|---|---|
| islnopp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islnopp.a |
. . 3
| |
| 2 | islnopp.b |
. . 3
| |
| 3 | eleq1 2689 |
. . . . . 6
| |
| 4 | 3 | anbi1d 741 |
. . . . 5
|
| 5 | id 22 |
. . . . . . . 8
| |
| 6 | 5 | oveq1d 6665 |
. . . . . . 7
|
| 7 | 6 | eleq2d 2687 |
. . . . . 6
|
| 8 | 7 | rexbidv 3052 |
. . . . 5
|
| 9 | 4, 8 | anbi12d 747 |
. . . 4
|
| 10 | eleq1 2689 |
. . . . . 6
| |
| 11 | 10 | anbi2d 740 |
. . . . 5
|
| 12 | oveq2 6658 |
. . . . . . 7
| |
| 13 | 12 | eleq2d 2687 |
. . . . . 6
|
| 14 | 13 | rexbidv 3052 |
. . . . 5
|
| 15 | 11, 14 | anbi12d 747 |
. . . 4
|
| 16 | hpg.o |
. . . . 5
| |
| 17 | simpl 473 |
. . . . . . . . 9
| |
| 18 | eqidd 2623 |
. . . . . . . . 9
| |
| 19 | 17, 18 | eleq12d 2695 |
. . . . . . . 8
|
| 20 | simpr 477 |
. . . . . . . . 9
| |
| 21 | 20, 18 | eleq12d 2695 |
. . . . . . . 8
|
| 22 | 19, 21 | anbi12d 747 |
. . . . . . 7
|
| 23 | oveq12 6659 |
. . . . . . . . 9
| |
| 24 | 23 | eleq2d 2687 |
. . . . . . . 8
|
| 25 | 24 | rexbidv 3052 |
. . . . . . 7
|
| 26 | 22, 25 | anbi12d 747 |
. . . . . 6
|
| 27 | 26 | cbvopabv 4722 |
. . . . 5
|
| 28 | 16, 27 | eqtri 2644 |
. . . 4
|
| 29 | 9, 15, 28 | brabg 4994 |
. . 3
|
| 30 | 1, 2, 29 | syl2anc 693 |
. 2
|
| 31 | 1 | biantrurd 529 |
. . . . 5
|
| 32 | eldif 3584 |
. . . . 5
| |
| 33 | 31, 32 | syl6bbr 278 |
. . . 4
|
| 34 | 2 | biantrurd 529 |
. . . . 5
|
| 35 | eldif 3584 |
. . . . 5
| |
| 36 | 34, 35 | syl6bbr 278 |
. . . 4
|
| 37 | 33, 36 | anbi12d 747 |
. . 3
|
| 38 | 37 | anbi1d 741 |
. 2
|
| 39 | 30, 38 | bitr4d 271 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-iota 5851 df-fv 5896 df-ov 6653 |
| This theorem is referenced by: islnoppd 25632 oppne1 25633 oppne2 25634 oppne3 25635 oppcom 25636 oppnid 25638 opphllem1 25639 opphllem3 25641 opphllem4 25642 opphllem5 25643 opphllem6 25644 oppperpex 25645 outpasch 25647 lnopp2hpgb 25655 hpgerlem 25657 colopp 25661 colhp 25662 lmiopp 25694 trgcopyeulem 25697 |
| Copyright terms: Public domain | W3C validator |