Proof of Theorem opphllem2
| Step | Hyp | Ref
| Expression |
| 1 | | hpg.p |
. . 3
     |
| 2 | | hpg.d |
. . 3
     |
| 3 | | hpg.i |
. . 3
Itv   |
| 4 | | hpg.o |
. . 3
   
   
           |
| 5 | | opphl.l |
. . 3
LineG   |
| 6 | | opphl.d |
. . . 4
   |
| 7 | 6 | adantr 481 |
. . 3
 
    
  |
| 8 | | opphl.g |
. . . 4

TarskiG |
| 9 | 8 | adantr 481 |
. . 3
 
    
TarskiG |
| 10 | | opphllem1.c |
. . . 4
   |
| 11 | 10 | adantr 481 |
. . 3
 
    
  |
| 12 | | opphllem1.b |
. . . 4
   |
| 13 | 12 | adantr 481 |
. . 3
 
    
  |
| 14 | | opphllem1.s |
. . . 4
 pInvG      |
| 15 | | eqid 2622 |
. . . . 5
pInvG  pInvG   |
| 16 | | opphllem1.m |
. . . . . . 7
   |
| 17 | 1, 5, 3, 8, 6, 16 | tglnpt 25444 |
. . . . . 6
   |
| 18 | 17 | adantr 481 |
. . . . 5
 
    
  |
| 19 | 1, 2, 3, 5, 15, 9,
18, 14, 13 | mircl 25556 |
. . . 4
 
    
      |
| 20 | 16 | adantr 481 |
. . . . 5
 
    
  |
| 21 | | opphllem1.r |
. . . . . 6
   |
| 22 | 21 | adantr 481 |
. . . . 5
 
    
  |
| 23 | 1, 2, 3, 5, 15, 9,
14, 7, 20, 22 | mirln 25571 |
. . . 4
 
    
      |
| 24 | | simpr 477 |
. . . . . . . . 9
   
    


  |
| 25 | | simplr 792 |
. . . . . . . . 9
   
    


  |
| 26 | 24, 25 | eqeltrd 2701 |
. . . . . . . 8
   
    


  |
| 27 | 8 | ad3antrrr 766 |
. . . . . . . . . 10
   
    


TarskiG |
| 28 | 12 | ad3antrrr 766 |
. . . . . . . . . 10
   
    


  |
| 29 | 1, 5, 3, 8, 6, 21 | tglnpt 25444 |
. . . . . . . . . . 11
   |
| 30 | 29 | ad3antrrr 766 |
. . . . . . . . . 10
   
    


  |
| 31 | | opphllem1.a |
. . . . . . . . . . 11
   |
| 32 | 31 | ad3antrrr 766 |
. . . . . . . . . 10
   
    


  |
| 33 | | opphllem1.y |
. . . . . . . . . . 11
   |
| 34 | 33 | ad3antrrr 766 |
. . . . . . . . . 10
   
    


  |
| 35 | 34 | necomd 2849 |
. . . . . . . . . . 11
   
    


  |
| 36 | | simpllr 799 |
. . . . . . . . . . 11
   
    


      |
| 37 | 1, 3, 5, 27, 30, 28, 32, 35, 36 | btwnlng1 25514 |
. . . . . . . . . 10
   
    


      |
| 38 | 1, 3, 5, 27, 28, 30, 32, 34, 37 | lncom 25517 |
. . . . . . . . 9
   
    


      |
| 39 | 6 | ad3antrrr 766 |
. . . . . . . . . 10
   
    


  |
| 40 | | simplr 792 |
. . . . . . . . . 10
   
    


  |
| 41 | 21 | ad3antrrr 766 |
. . . . . . . . . 10
   
    


  |
| 42 | 1, 3, 5, 27, 28, 30, 34, 34, 39, 40, 41 | tglinethru 25531 |
. . . . . . . . 9
   
    


      |
| 43 | 38, 42 | eleqtrrd 2704 |
. . . . . . . 8
   
    


  |
| 44 | 26, 43 | pm2.61dane 2881 |
. . . . . . 7
           |
| 45 | | opphllem1.o |
. . . . . . . . 9
     |
| 46 | 1, 2, 3, 4, 5, 6, 8, 31, 10, 45 | oppne1 25633 |
. . . . . . . 8
   |
| 47 | 46 | ad2antrr 762 |
. . . . . . 7
        
  |
| 48 | 44, 47 | pm2.65da 600 |
. . . . . 6
 
    
  |
| 49 | 9 | adantr 481 |
. . . . . . . 8
             TarskiG |
| 50 | 18 | adantr 481 |
. . . . . . . 8
               |
| 51 | 13 | adantr 481 |
. . . . . . . 8
               |
| 52 | 1, 2, 3, 5, 15, 49, 50, 14, 51 | mirmir 25557 |
. . . . . . 7
                       |
| 53 | 7 | adantr 481 |
. . . . . . . 8
               |
| 54 | 20 | adantr 481 |
. . . . . . . 8
               |
| 55 | | simpr 477 |
. . . . . . . 8
                   |
| 56 | 1, 2, 3, 5, 15, 49, 14, 53, 54, 55 | mirln 25571 |
. . . . . . 7
                       |
| 57 | 52, 56 | eqeltrrd 2702 |
. . . . . 6
               |
| 58 | 48, 57 | mtand 691 |
. . . . 5
 
    
      |
| 59 | 1, 2, 3, 5, 15, 9,
18, 14, 13 | mirbtwn 25553 |
. . . . 5
 
    
          |
| 60 | 1, 2, 3, 4, 19, 13, 20, 58, 48, 59 | islnoppd 25632 |
. . . 4
 
    
        |
| 61 | | eqidd 2623 |
. . . 4
 
    
          |
| 62 | | nelne2 2891 |
. . . . . 6
                     |
| 63 | 23, 58, 62 | syl2anc 693 |
. . . . 5
 
    
          |
| 64 | 63 | necomd 2849 |
. . . 4
 
    
          |
| 65 | 1, 2, 3, 4, 5, 6, 8, 31, 10, 45 | oppne2 25634 |
. . . . . . 7
   |
| 66 | 65 | adantr 481 |
. . . . . 6
 
    
  |
| 67 | | nelne2 2891 |
. . . . . 6
     

      |
| 68 | 23, 66, 67 | syl2anc 693 |
. . . . 5
 
    
      |
| 69 | 68 | necomd 2849 |
. . . 4
 
    
      |
| 70 | | opphllem1.n |
. . . . . . . 8
       |
| 71 | 70 | eqcomd 2628 |
. . . . . . 7
       |
| 72 | 1, 2, 3, 5, 15, 8,
17, 14, 10, 71 | mircom 25558 |
. . . . . 6
       |
| 73 | 72 | adantr 481 |
. . . . 5
 
    
      |
| 74 | 29 | adantr 481 |
. . . . . 6
 
    
  |
| 75 | 31 | adantr 481 |
. . . . . 6
 
    
  |
| 76 | | simpr 477 |
. . . . . 6
 
    
      |
| 77 | 1, 2, 3, 5, 15, 9,
18, 14, 74, 75, 13, 76 | mirbtwni 25566 |
. . . . 5
 
    
                  |
| 78 | 73, 77 | eqeltrrd 2702 |
. . . 4
 
    
              |
| 79 | 1, 2, 3, 4, 5, 7, 9, 14, 19, 11, 13, 23, 60, 20, 61, 64, 69, 78 | opphllem1 25639 |
. . 3
 
    
    |
| 80 | 1, 2, 3, 4, 5, 7, 9, 11, 13, 79 | oppcom 25636 |
. 2
 
    
    |
| 81 | 6 | adantr 481 |
. . 3
 
    
  |
| 82 | 8 | adantr 481 |
. . 3
 
    
TarskiG |
| 83 | 31 | adantr 481 |
. . 3
 
    
  |
| 84 | 12 | adantr 481 |
. . 3
 
    
  |
| 85 | 10 | adantr 481 |
. . 3
 
    
  |
| 86 | 21 | adantr 481 |
. . 3
 
    
  |
| 87 | 45 | adantr 481 |
. . 3
 
    
    |
| 88 | 16 | adantr 481 |
. . 3
 
    
  |
| 89 | 70 | adantr 481 |
. . 3
 
    
      |
| 90 | | opphllem1.x |
. . . 4
   |
| 91 | 90 | adantr 481 |
. . 3
 
    
  |
| 92 | 33 | adantr 481 |
. . 3
 
    
  |
| 93 | | simpr 477 |
. . 3
 
    
      |
| 94 | 1, 2, 3, 4, 5, 81,
82, 14, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93 | opphllem1 25639 |
. 2
 
    
    |
| 95 | | opphllem2.z |
. 2
             |
| 96 | 80, 94, 95 | mpjaodan 827 |
1
     |