Proof of Theorem opphllem2
Step | Hyp | Ref
| Expression |
1 | | hpg.p |
. . 3
     |
2 | | hpg.d |
. . 3
     |
3 | | hpg.i |
. . 3
Itv   |
4 | | hpg.o |
. . 3
   
   
           |
5 | | opphl.l |
. . 3
LineG   |
6 | | opphl.d |
. . . 4
   |
7 | 6 | adantr 481 |
. . 3
 
    
  |
8 | | opphl.g |
. . . 4

TarskiG |
9 | 8 | adantr 481 |
. . 3
 
    
TarskiG |
10 | | opphllem1.c |
. . . 4
   |
11 | 10 | adantr 481 |
. . 3
 
    
  |
12 | | opphllem1.b |
. . . 4
   |
13 | 12 | adantr 481 |
. . 3
 
    
  |
14 | | opphllem1.s |
. . . 4
 pInvG      |
15 | | eqid 2622 |
. . . . 5
pInvG  pInvG   |
16 | | opphllem1.m |
. . . . . . 7
   |
17 | 1, 5, 3, 8, 6, 16 | tglnpt 25444 |
. . . . . 6
   |
18 | 17 | adantr 481 |
. . . . 5
 
    
  |
19 | 1, 2, 3, 5, 15, 9,
18, 14, 13 | mircl 25556 |
. . . 4
 
    
      |
20 | 16 | adantr 481 |
. . . . 5
 
    
  |
21 | | opphllem1.r |
. . . . . 6
   |
22 | 21 | adantr 481 |
. . . . 5
 
    
  |
23 | 1, 2, 3, 5, 15, 9,
14, 7, 20, 22 | mirln 25571 |
. . . 4
 
    
      |
24 | | simpr 477 |
. . . . . . . . 9
   
    


  |
25 | | simplr 792 |
. . . . . . . . 9
   
    


  |
26 | 24, 25 | eqeltrd 2701 |
. . . . . . . 8
   
    


  |
27 | 8 | ad3antrrr 766 |
. . . . . . . . . 10
   
    


TarskiG |
28 | 12 | ad3antrrr 766 |
. . . . . . . . . 10
   
    


  |
29 | 1, 5, 3, 8, 6, 21 | tglnpt 25444 |
. . . . . . . . . . 11
   |
30 | 29 | ad3antrrr 766 |
. . . . . . . . . 10
   
    


  |
31 | | opphllem1.a |
. . . . . . . . . . 11
   |
32 | 31 | ad3antrrr 766 |
. . . . . . . . . 10
   
    


  |
33 | | opphllem1.y |
. . . . . . . . . . 11
   |
34 | 33 | ad3antrrr 766 |
. . . . . . . . . 10
   
    


  |
35 | 34 | necomd 2849 |
. . . . . . . . . . 11
   
    


  |
36 | | simpllr 799 |
. . . . . . . . . . 11
   
    


      |
37 | 1, 3, 5, 27, 30, 28, 32, 35, 36 | btwnlng1 25514 |
. . . . . . . . . 10
   
    


      |
38 | 1, 3, 5, 27, 28, 30, 32, 34, 37 | lncom 25517 |
. . . . . . . . 9
   
    


      |
39 | 6 | ad3antrrr 766 |
. . . . . . . . . 10
   
    


  |
40 | | simplr 792 |
. . . . . . . . . 10
   
    


  |
41 | 21 | ad3antrrr 766 |
. . . . . . . . . 10
   
    


  |
42 | 1, 3, 5, 27, 28, 30, 34, 34, 39, 40, 41 | tglinethru 25531 |
. . . . . . . . 9
   
    


      |
43 | 38, 42 | eleqtrrd 2704 |
. . . . . . . 8
   
    


  |
44 | 26, 43 | pm2.61dane 2881 |
. . . . . . 7
           |
45 | | opphllem1.o |
. . . . . . . . 9
     |
46 | 1, 2, 3, 4, 5, 6, 8, 31, 10, 45 | oppne1 25633 |
. . . . . . . 8
   |
47 | 46 | ad2antrr 762 |
. . . . . . 7
        
  |
48 | 44, 47 | pm2.65da 600 |
. . . . . 6
 
    
  |
49 | 9 | adantr 481 |
. . . . . . . 8
             TarskiG |
50 | 18 | adantr 481 |
. . . . . . . 8
               |
51 | 13 | adantr 481 |
. . . . . . . 8
               |
52 | 1, 2, 3, 5, 15, 49, 50, 14, 51 | mirmir 25557 |
. . . . . . 7
                       |
53 | 7 | adantr 481 |
. . . . . . . 8
               |
54 | 20 | adantr 481 |
. . . . . . . 8
               |
55 | | simpr 477 |
. . . . . . . 8
                   |
56 | 1, 2, 3, 5, 15, 49, 14, 53, 54, 55 | mirln 25571 |
. . . . . . 7
                       |
57 | 52, 56 | eqeltrrd 2702 |
. . . . . 6
               |
58 | 48, 57 | mtand 691 |
. . . . 5
 
    
      |
59 | 1, 2, 3, 5, 15, 9,
18, 14, 13 | mirbtwn 25553 |
. . . . 5
 
    
          |
60 | 1, 2, 3, 4, 19, 13, 20, 58, 48, 59 | islnoppd 25632 |
. . . 4
 
    
        |
61 | | eqidd 2623 |
. . . 4
 
    
          |
62 | | nelne2 2891 |
. . . . . 6
                     |
63 | 23, 58, 62 | syl2anc 693 |
. . . . 5
 
    
          |
64 | 63 | necomd 2849 |
. . . 4
 
    
          |
65 | 1, 2, 3, 4, 5, 6, 8, 31, 10, 45 | oppne2 25634 |
. . . . . . 7
   |
66 | 65 | adantr 481 |
. . . . . 6
 
    
  |
67 | | nelne2 2891 |
. . . . . 6
     

      |
68 | 23, 66, 67 | syl2anc 693 |
. . . . 5
 
    
      |
69 | 68 | necomd 2849 |
. . . 4
 
    
      |
70 | | opphllem1.n |
. . . . . . . 8
       |
71 | 70 | eqcomd 2628 |
. . . . . . 7
       |
72 | 1, 2, 3, 5, 15, 8,
17, 14, 10, 71 | mircom 25558 |
. . . . . 6
       |
73 | 72 | adantr 481 |
. . . . 5
 
    
      |
74 | 29 | adantr 481 |
. . . . . 6
 
    
  |
75 | 31 | adantr 481 |
. . . . . 6
 
    
  |
76 | | simpr 477 |
. . . . . 6
 
    
      |
77 | 1, 2, 3, 5, 15, 9,
18, 14, 74, 75, 13, 76 | mirbtwni 25566 |
. . . . 5
 
    
                  |
78 | 73, 77 | eqeltrrd 2702 |
. . . 4
 
    
              |
79 | 1, 2, 3, 4, 5, 7, 9, 14, 19, 11, 13, 23, 60, 20, 61, 64, 69, 78 | opphllem1 25639 |
. . 3
 
    
    |
80 | 1, 2, 3, 4, 5, 7, 9, 11, 13, 79 | oppcom 25636 |
. 2
 
    
    |
81 | 6 | adantr 481 |
. . 3
 
    
  |
82 | 8 | adantr 481 |
. . 3
 
    
TarskiG |
83 | 31 | adantr 481 |
. . 3
 
    
  |
84 | 12 | adantr 481 |
. . 3
 
    
  |
85 | 10 | adantr 481 |
. . 3
 
    
  |
86 | 21 | adantr 481 |
. . 3
 
    
  |
87 | 45 | adantr 481 |
. . 3
 
    
    |
88 | 16 | adantr 481 |
. . 3
 
    
  |
89 | 70 | adantr 481 |
. . 3
 
    
      |
90 | | opphllem1.x |
. . . 4
   |
91 | 90 | adantr 481 |
. . 3
 
    
  |
92 | 33 | adantr 481 |
. . 3
 
    
  |
93 | | simpr 477 |
. . 3
 
    
      |
94 | 1, 2, 3, 4, 5, 81,
82, 14, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93 | opphllem1 25639 |
. 2
 
    
    |
95 | | opphllem2.z |
. 2
             |
96 | 80, 94, 95 | mpjaodan 827 |
1
     |