Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isnacs2 Structured version   Visualization version   Unicode version

Theorem isnacs2 37269
Description: Express Noetherian-type closure system with fewer quantifiers. (Contributed by Stefan O'Rear, 4-Apr-2015.)
Hypothesis
Ref Expression
isnacs.f  |-  F  =  (mrCls `  C )
Assertion
Ref Expression
isnacs2  |-  ( C  e.  (NoeACS `  X
)  <->  ( C  e.  (ACS `  X )  /\  ( F " ( ~P X  i^i  Fin )
)  =  C ) )

Proof of Theorem isnacs2
Dummy variables  g 
s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isnacs.f . . 3  |-  F  =  (mrCls `  C )
21isnacs 37267 . 2  |-  ( C  e.  (NoeACS `  X
)  <->  ( C  e.  (ACS `  X )  /\  A. s  e.  C  E. g  e.  ( ~P X  i^i  Fin )
s  =  ( F `
 g ) ) )
3 acsmre 16313 . . . . . . . . 9  |-  ( C  e.  (ACS `  X
)  ->  C  e.  (Moore `  X ) )
41mrcf 16269 . . . . . . . . 9  |-  ( C  e.  (Moore `  X
)  ->  F : ~P X --> C )
5 ffn 6045 . . . . . . . . 9  |-  ( F : ~P X --> C  ->  F  Fn  ~P X
)
63, 4, 53syl 18 . . . . . . . 8  |-  ( C  e.  (ACS `  X
)  ->  F  Fn  ~P X )
7 inss1 3833 . . . . . . . 8  |-  ( ~P X  i^i  Fin )  C_ 
~P X
8 fvelimab 6253 . . . . . . . 8  |-  ( ( F  Fn  ~P X  /\  ( ~P X  i^i  Fin )  C_  ~P X
)  ->  ( s  e.  ( F " ( ~P X  i^i  Fin )
)  <->  E. g  e.  ( ~P X  i^i  Fin ) ( F `  g )  =  s ) )
96, 7, 8sylancl 694 . . . . . . 7  |-  ( C  e.  (ACS `  X
)  ->  ( s  e.  ( F " ( ~P X  i^i  Fin )
)  <->  E. g  e.  ( ~P X  i^i  Fin ) ( F `  g )  =  s ) )
10 eqcom 2629 . . . . . . . 8  |-  ( s  =  ( F `  g )  <->  ( F `  g )  =  s )
1110rexbii 3041 . . . . . . 7  |-  ( E. g  e.  ( ~P X  i^i  Fin )
s  =  ( F `
 g )  <->  E. g  e.  ( ~P X  i^i  Fin ) ( F `  g )  =  s )
129, 11syl6rbbr 279 . . . . . 6  |-  ( C  e.  (ACS `  X
)  ->  ( E. g  e.  ( ~P X  i^i  Fin ) s  =  ( F `  g )  <->  s  e.  ( F " ( ~P X  i^i  Fin )
) ) )
1312ralbidv 2986 . . . . 5  |-  ( C  e.  (ACS `  X
)  ->  ( A. s  e.  C  E. g  e.  ( ~P X  i^i  Fin ) s  =  ( F `  g )  <->  A. s  e.  C  s  e.  ( F " ( ~P X  i^i  Fin )
) ) )
14 dfss3 3592 . . . . 5  |-  ( C 
C_  ( F "
( ~P X  i^i  Fin ) )  <->  A. s  e.  C  s  e.  ( F " ( ~P X  i^i  Fin )
) )
1513, 14syl6bbr 278 . . . 4  |-  ( C  e.  (ACS `  X
)  ->  ( A. s  e.  C  E. g  e.  ( ~P X  i^i  Fin ) s  =  ( F `  g )  <->  C  C_  ( F " ( ~P X  i^i  Fin ) ) ) )
16 imassrn 5477 . . . . . . 7  |-  ( F
" ( ~P X  i^i  Fin ) )  C_  ran  F
17 frn 6053 . . . . . . . 8  |-  ( F : ~P X --> C  ->  ran  F  C_  C )
183, 4, 173syl 18 . . . . . . 7  |-  ( C  e.  (ACS `  X
)  ->  ran  F  C_  C )
1916, 18syl5ss 3614 . . . . . 6  |-  ( C  e.  (ACS `  X
)  ->  ( F " ( ~P X  i^i  Fin ) )  C_  C
)
2019biantrurd 529 . . . . 5  |-  ( C  e.  (ACS `  X
)  ->  ( C  C_  ( F " ( ~P X  i^i  Fin )
)  <->  ( ( F
" ( ~P X  i^i  Fin ) )  C_  C  /\  C  C_  ( F " ( ~P X  i^i  Fin ) ) ) ) )
21 eqss 3618 . . . . 5  |-  ( ( F " ( ~P X  i^i  Fin )
)  =  C  <->  ( ( F " ( ~P X  i^i  Fin ) )  C_  C  /\  C  C_  ( F " ( ~P X  i^i  Fin ) ) ) )
2220, 21syl6bbr 278 . . . 4  |-  ( C  e.  (ACS `  X
)  ->  ( C  C_  ( F " ( ~P X  i^i  Fin )
)  <->  ( F "
( ~P X  i^i  Fin ) )  =  C ) )
2315, 22bitrd 268 . . 3  |-  ( C  e.  (ACS `  X
)  ->  ( A. s  e.  C  E. g  e.  ( ~P X  i^i  Fin ) s  =  ( F `  g )  <->  ( F " ( ~P X  i^i  Fin ) )  =  C ) )
2423pm5.32i 669 . 2  |-  ( ( C  e.  (ACS `  X )  /\  A. s  e.  C  E. g  e.  ( ~P X  i^i  Fin ) s  =  ( F `  g ) )  <->  ( C  e.  (ACS `  X )  /\  ( F " ( ~P X  i^i  Fin )
)  =  C ) )
252, 24bitri 264 1  |-  ( C  e.  (NoeACS `  X
)  <->  ( C  e.  (ACS `  X )  /\  ( F " ( ~P X  i^i  Fin )
)  =  C ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   ran crn 5115   "cima 5117    Fn wfn 5883   -->wf 5884   ` cfv 5888   Fincfn 7955  Moorecmre 16242  mrClscmrc 16243  ACScacs 16245  NoeACScnacs 37265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-mre 16246  df-mrc 16247  df-acs 16249  df-nacs 37266
This theorem is referenced by:  nacsacs  37272
  Copyright terms: Public domain W3C validator