MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnsg2 Structured version   Visualization version   Unicode version

Theorem isnsg2 17624
Description: Weaken the condition of isnsg 17623 to only one side of the implication. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
isnsg.1  |-  X  =  ( Base `  G
)
isnsg.2  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
isnsg2  |-  ( S  e.  (NrmSGrp `  G
)  <->  ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  X  ( ( x  .+  y )  e.  S  ->  ( y  .+  x
)  e.  S ) ) )
Distinct variable groups:    x, y, G    x,  .+ , y    x, S, y    x, X, y

Proof of Theorem isnsg2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 isnsg.1 . . 3  |-  X  =  ( Base `  G
)
2 isnsg.2 . . 3  |-  .+  =  ( +g  `  G )
31, 2isnsg 17623 . 2  |-  ( S  e.  (NrmSGrp `  G
)  <->  ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. z  e.  X  ( ( x  .+  z )  e.  S  <->  ( z  .+  x )  e.  S ) ) )
4 dfbi2 660 . . . . . . 7  |-  ( ( ( x  .+  z
)  e.  S  <->  ( z  .+  x )  e.  S
)  <->  ( ( ( x  .+  z )  e.  S  ->  (
z  .+  x )  e.  S )  /\  (
( z  .+  x
)  e.  S  -> 
( x  .+  z
)  e.  S ) ) )
54ralbii 2980 . . . . . 6  |-  ( A. z  e.  X  (
( x  .+  z
)  e.  S  <->  ( z  .+  x )  e.  S
)  <->  A. z  e.  X  ( ( ( x 
.+  z )  e.  S  ->  ( z  .+  x )  e.  S
)  /\  ( (
z  .+  x )  e.  S  ->  ( x 
.+  z )  e.  S ) ) )
65ralbii 2980 . . . . 5  |-  ( A. x  e.  X  A. z  e.  X  (
( x  .+  z
)  e.  S  <->  ( z  .+  x )  e.  S
)  <->  A. x  e.  X  A. z  e.  X  ( ( ( x 
.+  z )  e.  S  ->  ( z  .+  x )  e.  S
)  /\  ( (
z  .+  x )  e.  S  ->  ( x 
.+  z )  e.  S ) ) )
7 r19.26-2 3065 . . . . 5  |-  ( A. x  e.  X  A. z  e.  X  (
( ( x  .+  z )  e.  S  ->  ( z  .+  x
)  e.  S )  /\  ( ( z 
.+  x )  e.  S  ->  ( x  .+  z )  e.  S
) )  <->  ( A. x  e.  X  A. z  e.  X  (
( x  .+  z
)  e.  S  -> 
( z  .+  x
)  e.  S )  /\  A. x  e.  X  A. z  e.  X  ( ( z 
.+  x )  e.  S  ->  ( x  .+  z )  e.  S
) ) )
86, 7bitri 264 . . . 4  |-  ( A. x  e.  X  A. z  e.  X  (
( x  .+  z
)  e.  S  <->  ( z  .+  x )  e.  S
)  <->  ( A. x  e.  X  A. z  e.  X  ( (
x  .+  z )  e.  S  ->  ( z 
.+  x )  e.  S )  /\  A. x  e.  X  A. z  e.  X  (
( z  .+  x
)  e.  S  -> 
( x  .+  z
)  e.  S ) ) )
9 oveq2 6658 . . . . . . . . 9  |-  ( z  =  y  ->  (
x  .+  z )  =  ( x  .+  y ) )
109eleq1d 2686 . . . . . . . 8  |-  ( z  =  y  ->  (
( x  .+  z
)  e.  S  <->  ( x  .+  y )  e.  S
) )
11 oveq1 6657 . . . . . . . . 9  |-  ( z  =  y  ->  (
z  .+  x )  =  ( y  .+  x ) )
1211eleq1d 2686 . . . . . . . 8  |-  ( z  =  y  ->  (
( z  .+  x
)  e.  S  <->  ( y  .+  x )  e.  S
) )
1310, 12imbi12d 334 . . . . . . 7  |-  ( z  =  y  ->  (
( ( x  .+  z )  e.  S  ->  ( z  .+  x
)  e.  S )  <-> 
( ( x  .+  y )  e.  S  ->  ( y  .+  x
)  e.  S ) ) )
1413cbvralv 3171 . . . . . 6  |-  ( A. z  e.  X  (
( x  .+  z
)  e.  S  -> 
( z  .+  x
)  e.  S )  <->  A. y  e.  X  ( ( x  .+  y )  e.  S  ->  ( y  .+  x
)  e.  S ) )
1514ralbii 2980 . . . . 5  |-  ( A. x  e.  X  A. z  e.  X  (
( x  .+  z
)  e.  S  -> 
( z  .+  x
)  e.  S )  <->  A. x  e.  X  A. y  e.  X  ( ( x  .+  y )  e.  S  ->  ( y  .+  x
)  e.  S ) )
16 ralcom 3098 . . . . . 6  |-  ( A. x  e.  X  A. z  e.  X  (
( z  .+  x
)  e.  S  -> 
( x  .+  z
)  e.  S )  <->  A. z  e.  X  A. x  e.  X  ( ( z  .+  x )  e.  S  ->  ( x  .+  z
)  e.  S ) )
17 oveq2 6658 . . . . . . . . . 10  |-  ( x  =  y  ->  (
z  .+  x )  =  ( z  .+  y ) )
1817eleq1d 2686 . . . . . . . . 9  |-  ( x  =  y  ->  (
( z  .+  x
)  e.  S  <->  ( z  .+  y )  e.  S
) )
19 oveq1 6657 . . . . . . . . . 10  |-  ( x  =  y  ->  (
x  .+  z )  =  ( y  .+  z ) )
2019eleq1d 2686 . . . . . . . . 9  |-  ( x  =  y  ->  (
( x  .+  z
)  e.  S  <->  ( y  .+  z )  e.  S
) )
2118, 20imbi12d 334 . . . . . . . 8  |-  ( x  =  y  ->  (
( ( z  .+  x )  e.  S  ->  ( x  .+  z
)  e.  S )  <-> 
( ( z  .+  y )  e.  S  ->  ( y  .+  z
)  e.  S ) ) )
2221cbvralv 3171 . . . . . . 7  |-  ( A. x  e.  X  (
( z  .+  x
)  e.  S  -> 
( x  .+  z
)  e.  S )  <->  A. y  e.  X  ( ( z  .+  y )  e.  S  ->  ( y  .+  z
)  e.  S ) )
2322ralbii 2980 . . . . . 6  |-  ( A. z  e.  X  A. x  e.  X  (
( z  .+  x
)  e.  S  -> 
( x  .+  z
)  e.  S )  <->  A. z  e.  X  A. y  e.  X  ( ( z  .+  y )  e.  S  ->  ( y  .+  z
)  e.  S ) )
24 oveq1 6657 . . . . . . . . . 10  |-  ( z  =  x  ->  (
z  .+  y )  =  ( x  .+  y ) )
2524eleq1d 2686 . . . . . . . . 9  |-  ( z  =  x  ->  (
( z  .+  y
)  e.  S  <->  ( x  .+  y )  e.  S
) )
26 oveq2 6658 . . . . . . . . . 10  |-  ( z  =  x  ->  (
y  .+  z )  =  ( y  .+  x ) )
2726eleq1d 2686 . . . . . . . . 9  |-  ( z  =  x  ->  (
( y  .+  z
)  e.  S  <->  ( y  .+  x )  e.  S
) )
2825, 27imbi12d 334 . . . . . . . 8  |-  ( z  =  x  ->  (
( ( z  .+  y )  e.  S  ->  ( y  .+  z
)  e.  S )  <-> 
( ( x  .+  y )  e.  S  ->  ( y  .+  x
)  e.  S ) ) )
2928ralbidv 2986 . . . . . . 7  |-  ( z  =  x  ->  ( A. y  e.  X  ( ( z  .+  y )  e.  S  ->  ( y  .+  z
)  e.  S )  <->  A. y  e.  X  ( ( x  .+  y )  e.  S  ->  ( y  .+  x
)  e.  S ) ) )
3029cbvralv 3171 . . . . . 6  |-  ( A. z  e.  X  A. y  e.  X  (
( z  .+  y
)  e.  S  -> 
( y  .+  z
)  e.  S )  <->  A. x  e.  X  A. y  e.  X  ( ( x  .+  y )  e.  S  ->  ( y  .+  x
)  e.  S ) )
3116, 23, 303bitri 286 . . . . 5  |-  ( A. x  e.  X  A. z  e.  X  (
( z  .+  x
)  e.  S  -> 
( x  .+  z
)  e.  S )  <->  A. x  e.  X  A. y  e.  X  ( ( x  .+  y )  e.  S  ->  ( y  .+  x
)  e.  S ) )
3215, 31anbi12i 733 . . . 4  |-  ( ( A. x  e.  X  A. z  e.  X  ( ( x  .+  z )  e.  S  ->  ( z  .+  x
)  e.  S )  /\  A. x  e.  X  A. z  e.  X  ( ( z 
.+  x )  e.  S  ->  ( x  .+  z )  e.  S
) )  <->  ( A. x  e.  X  A. y  e.  X  (
( x  .+  y
)  e.  S  -> 
( y  .+  x
)  e.  S )  /\  A. x  e.  X  A. y  e.  X  ( ( x 
.+  y )  e.  S  ->  ( y  .+  x )  e.  S
) ) )
33 anidm 676 . . . 4  |-  ( ( A. x  e.  X  A. y  e.  X  ( ( x  .+  y )  e.  S  ->  ( y  .+  x
)  e.  S )  /\  A. x  e.  X  A. y  e.  X  ( ( x 
.+  y )  e.  S  ->  ( y  .+  x )  e.  S
) )  <->  A. x  e.  X  A. y  e.  X  ( (
x  .+  y )  e.  S  ->  ( y 
.+  x )  e.  S ) )
348, 32, 333bitri 286 . . 3  |-  ( A. x  e.  X  A. z  e.  X  (
( x  .+  z
)  e.  S  <->  ( z  .+  x )  e.  S
)  <->  A. x  e.  X  A. y  e.  X  ( ( x  .+  y )  e.  S  ->  ( y  .+  x
)  e.  S ) )
3534anbi2i 730 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. z  e.  X  (
( x  .+  z
)  e.  S  <->  ( z  .+  x )  e.  S
) )  <->  ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  X  ( ( x  .+  y )  e.  S  ->  ( y  .+  x
)  e.  S ) ) )
363, 35bitri 264 1  |-  ( S  e.  (NrmSGrp `  G
)  <->  ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  X  ( ( x  .+  y )  e.  S  ->  ( y  .+  x
)  e.  S ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941  SubGrpcsubg 17588  NrmSGrpcnsg 17589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-subg 17591  df-nsg 17592
This theorem is referenced by:  isnsg3  17628  tgpconncomp  21916
  Copyright terms: Public domain W3C validator