| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isnsg3 | Structured version Visualization version Unicode version | ||
| Description: A subgroup is normal iff the conjugation of all the elements of the subgroup is in the subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.) |
| Ref | Expression |
|---|---|
| isnsg3.1 |
|
| isnsg3.2 |
|
| isnsg3.3 |
|
| Ref | Expression |
|---|---|
| isnsg3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nsgsubg 17626 |
. . 3
| |
| 2 | isnsg3.1 |
. . . . . 6
| |
| 3 | isnsg3.2 |
. . . . . 6
| |
| 4 | isnsg3.3 |
. . . . . 6
| |
| 5 | 2, 3, 4 | nsgconj 17627 |
. . . . 5
|
| 6 | 5 | 3expb 1266 |
. . . 4
|
| 7 | 6 | ralrimivva 2971 |
. . 3
|
| 8 | 1, 7 | jca 554 |
. 2
|
| 9 | simpl 473 |
. . 3
| |
| 10 | subgrcl 17599 |
. . . . . . . . . . . 12
| |
| 11 | 10 | ad2antrr 762 |
. . . . . . . . . . 11
|
| 12 | simprll 802 |
. . . . . . . . . . 11
| |
| 13 | eqid 2622 |
. . . . . . . . . . . 12
| |
| 14 | eqid 2622 |
. . . . . . . . . . . 12
| |
| 15 | 2, 3, 13, 14 | grplinv 17468 |
. . . . . . . . . . 11
|
| 16 | 11, 12, 15 | syl2anc 693 |
. . . . . . . . . 10
|
| 17 | 16 | oveq1d 6665 |
. . . . . . . . 9
|
| 18 | 2, 14 | grpinvcl 17467 |
. . . . . . . . . . 11
|
| 19 | 11, 12, 18 | syl2anc 693 |
. . . . . . . . . 10
|
| 20 | simprlr 803 |
. . . . . . . . . 10
| |
| 21 | 2, 3 | grpass 17431 |
. . . . . . . . . 10
|
| 22 | 11, 19, 12, 20, 21 | syl13anc 1328 |
. . . . . . . . 9
|
| 23 | 2, 3, 13 | grplid 17452 |
. . . . . . . . . 10
|
| 24 | 11, 20, 23 | syl2anc 693 |
. . . . . . . . 9
|
| 25 | 17, 22, 24 | 3eqtr3d 2664 |
. . . . . . . 8
|
| 26 | 25 | oveq1d 6665 |
. . . . . . 7
|
| 27 | 2, 3, 4, 14, 11, 20, 12 | grpsubinv 17488 |
. . . . . . 7
|
| 28 | 26, 27 | eqtrd 2656 |
. . . . . 6
|
| 29 | simprr 796 |
. . . . . . 7
| |
| 30 | simplr 792 |
. . . . . . 7
| |
| 31 | oveq1 6657 |
. . . . . . . . . 10
| |
| 32 | id 22 |
. . . . . . . . . 10
| |
| 33 | 31, 32 | oveq12d 6668 |
. . . . . . . . 9
|
| 34 | 33 | eleq1d 2686 |
. . . . . . . 8
|
| 35 | oveq2 6658 |
. . . . . . . . . 10
| |
| 36 | 35 | oveq1d 6665 |
. . . . . . . . 9
|
| 37 | 36 | eleq1d 2686 |
. . . . . . . 8
|
| 38 | 34, 37 | rspc2va 3323 |
. . . . . . 7
|
| 39 | 19, 29, 30, 38 | syl21anc 1325 |
. . . . . 6
|
| 40 | 28, 39 | eqeltrrd 2702 |
. . . . 5
|
| 41 | 40 | expr 643 |
. . . 4
|
| 42 | 41 | ralrimivva 2971 |
. . 3
|
| 43 | 2, 3 | isnsg2 17624 |
. . 3
|
| 44 | 9, 42, 43 | sylanbrc 698 |
. 2
|
| 45 | 8, 44 | impbii 199 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-0g 16102 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-grp 17425 df-minusg 17426 df-sbg 17427 df-subg 17591 df-nsg 17592 |
| This theorem is referenced by: nsgacs 17630 0nsg 17639 nsgid 17640 ghmnsgima 17684 ghmnsgpreima 17685 cntrsubgnsg 17773 clsnsg 21913 |
| Copyright terms: Public domain | W3C validator |