Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ispconn Structured version   Visualization version   Unicode version

Theorem ispconn 31205
Description: The property of being a path-connected topological space. (Contributed by Mario Carneiro, 11-Feb-2015.)
Hypothesis
Ref Expression
ispconn.1  |-  X  = 
U. J
Assertion
Ref Expression
ispconn  |-  ( J  e. PConn 
<->  ( J  e.  Top  /\ 
A. x  e.  X  A. y  e.  X  E. f  e.  (
II  Cn  J )
( ( f ` 
0 )  =  x  /\  ( f ` 
1 )  =  y ) ) )
Distinct variable groups:    x, f,
y, J    x, X, y
Allowed substitution hint:    X( f)

Proof of Theorem ispconn
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 unieq 4444 . . . 4  |-  ( j  =  J  ->  U. j  =  U. J )
2 ispconn.1 . . . 4  |-  X  = 
U. J
31, 2syl6eqr 2674 . . 3  |-  ( j  =  J  ->  U. j  =  X )
4 oveq2 6658 . . . . 5  |-  ( j  =  J  ->  (
II  Cn  j )  =  ( II  Cn  J ) )
54rexeqdv 3145 . . . 4  |-  ( j  =  J  ->  ( E. f  e.  (
II  Cn  j )
( ( f ` 
0 )  =  x  /\  ( f ` 
1 )  =  y )  <->  E. f  e.  ( II  Cn  J ) ( ( f ` 
0 )  =  x  /\  ( f ` 
1 )  =  y ) ) )
63, 5raleqbidv 3152 . . 3  |-  ( j  =  J  ->  ( A. y  e.  U. j E. f  e.  (
II  Cn  j )
( ( f ` 
0 )  =  x  /\  ( f ` 
1 )  =  y )  <->  A. y  e.  X  E. f  e.  (
II  Cn  J )
( ( f ` 
0 )  =  x  /\  ( f ` 
1 )  =  y ) ) )
73, 6raleqbidv 3152 . 2  |-  ( j  =  J  ->  ( A. x  e.  U. j A. y  e.  U. j E. f  e.  (
II  Cn  j )
( ( f ` 
0 )  =  x  /\  ( f ` 
1 )  =  y )  <->  A. x  e.  X  A. y  e.  X  E. f  e.  (
II  Cn  J )
( ( f ` 
0 )  =  x  /\  ( f ` 
1 )  =  y ) ) )
8 df-pconn 31203 . 2  |- PConn  =  {
j  e.  Top  |  A. x  e.  U. j A. y  e.  U. j E. f  e.  (
II  Cn  j )
( ( f ` 
0 )  =  x  /\  ( f ` 
1 )  =  y ) }
97, 8elrab2 3366 1  |-  ( J  e. PConn 
<->  ( J  e.  Top  /\ 
A. x  e.  X  A. y  e.  X  E. f  e.  (
II  Cn  J )
( ( f ` 
0 )  =  x  /\  ( f ` 
1 )  =  y ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   U.cuni 4436   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937   Topctop 20698    Cn ccn 21028   IIcii 22678  PConncpconn 31201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653  df-pconn 31203
This theorem is referenced by:  pconncn  31206  pconntop  31207  cnpconn  31212  txpconn  31214  ptpconn  31215  indispconn  31216  connpconn  31217  cvxpconn  31224
  Copyright terms: Public domain W3C validator