Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pconncn Structured version   Visualization version   Unicode version

Theorem pconncn 31206
Description: The property of being a path-connected topological space. (Contributed by Mario Carneiro, 11-Feb-2015.)
Hypothesis
Ref Expression
ispconn.1  |-  X  = 
U. J
Assertion
Ref Expression
pconncn  |-  ( ( J  e. PConn  /\  A  e.  X  /\  B  e.  X )  ->  E. f  e.  ( II  Cn  J
) ( ( f `
 0 )  =  A  /\  ( f `
 1 )  =  B ) )
Distinct variable groups:    A, f    B, f    f, J
Allowed substitution hint:    X( f)

Proof of Theorem pconncn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ispconn.1 . . . . 5  |-  X  = 
U. J
21ispconn 31205 . . . 4  |-  ( J  e. PConn 
<->  ( J  e.  Top  /\ 
A. x  e.  X  A. y  e.  X  E. f  e.  (
II  Cn  J )
( ( f ` 
0 )  =  x  /\  ( f ` 
1 )  =  y ) ) )
32simprbi 480 . . 3  |-  ( J  e. PConn  ->  A. x  e.  X  A. y  e.  X  E. f  e.  (
II  Cn  J )
( ( f ` 
0 )  =  x  /\  ( f ` 
1 )  =  y ) )
4 eqeq2 2633 . . . . . 6  |-  ( x  =  A  ->  (
( f `  0
)  =  x  <->  ( f `  0 )  =  A ) )
54anbi1d 741 . . . . 5  |-  ( x  =  A  ->  (
( ( f ` 
0 )  =  x  /\  ( f ` 
1 )  =  y )  <->  ( ( f `
 0 )  =  A  /\  ( f `
 1 )  =  y ) ) )
65rexbidv 3052 . . . 4  |-  ( x  =  A  ->  ( E. f  e.  (
II  Cn  J )
( ( f ` 
0 )  =  x  /\  ( f ` 
1 )  =  y )  <->  E. f  e.  ( II  Cn  J ) ( ( f ` 
0 )  =  A  /\  ( f ` 
1 )  =  y ) ) )
7 eqeq2 2633 . . . . . 6  |-  ( y  =  B  ->  (
( f `  1
)  =  y  <->  ( f `  1 )  =  B ) )
87anbi2d 740 . . . . 5  |-  ( y  =  B  ->  (
( ( f ` 
0 )  =  A  /\  ( f ` 
1 )  =  y )  <->  ( ( f `
 0 )  =  A  /\  ( f `
 1 )  =  B ) ) )
98rexbidv 3052 . . . 4  |-  ( y  =  B  ->  ( E. f  e.  (
II  Cn  J )
( ( f ` 
0 )  =  A  /\  ( f ` 
1 )  =  y )  <->  E. f  e.  ( II  Cn  J ) ( ( f ` 
0 )  =  A  /\  ( f ` 
1 )  =  B ) ) )
106, 9rspc2v 3322 . . 3  |-  ( ( A  e.  X  /\  B  e.  X )  ->  ( A. x  e.  X  A. y  e.  X  E. f  e.  ( II  Cn  J
) ( ( f `
 0 )  =  x  /\  ( f `
 1 )  =  y )  ->  E. f  e.  ( II  Cn  J
) ( ( f `
 0 )  =  A  /\  ( f `
 1 )  =  B ) ) )
113, 10syl5com 31 . 2  |-  ( J  e. PConn  ->  ( ( A  e.  X  /\  B  e.  X )  ->  E. f  e.  ( II  Cn  J
) ( ( f `
 0 )  =  A  /\  ( f `
 1 )  =  B ) ) )
12113impib 1262 1  |-  ( ( J  e. PConn  /\  A  e.  X  /\  B  e.  X )  ->  E. f  e.  ( II  Cn  J
) ( ( f `
 0 )  =  A  /\  ( f `
 1 )  =  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   U.cuni 4436   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937   Topctop 20698    Cn ccn 21028   IIcii 22678  PConncpconn 31201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653  df-pconn 31203
This theorem is referenced by:  cnpconn  31212  pconnconn  31213  txpconn  31214  ptpconn  31215  connpconn  31217  pconnpi1  31219  cvmlift3lem2  31302  cvmlift3lem7  31307
  Copyright terms: Public domain W3C validator