MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isphtpy Structured version   Visualization version   Unicode version

Theorem isphtpy 22780
Description: Membership in the class of path homotopies between two continuous functions. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
isphtpy.2  |-  ( ph  ->  F  e.  ( II 
Cn  J ) )
isphtpy.3  |-  ( ph  ->  G  e.  ( II 
Cn  J ) )
Assertion
Ref Expression
isphtpy  |-  ( ph  ->  ( H  e.  ( F ( PHtpy `  J
) G )  <->  ( H  e.  ( F ( II Htpy  J ) G )  /\  A. s  e.  ( 0 [,] 1
) ( ( 0 H s )  =  ( F `  0
)  /\  ( 1 H s )  =  ( F `  1
) ) ) ) )
Distinct variable groups:    F, s    G, s    H, s    J, s    ph, s

Proof of Theorem isphtpy
Dummy variables  f 
g  h  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isphtpy.2 . . . . 5  |-  ( ph  ->  F  e.  ( II 
Cn  J ) )
2 cntop2 21045 . . . . 5  |-  ( F  e.  ( II  Cn  J )  ->  J  e.  Top )
3 oveq2 6658 . . . . . . 7  |-  ( j  =  J  ->  (
II  Cn  j )  =  ( II  Cn  J ) )
4 oveq2 6658 . . . . . . . . 9  |-  ( j  =  J  ->  (
II Htpy  j )  =  ( II Htpy  J ) )
54oveqd 6667 . . . . . . . 8  |-  ( j  =  J  ->  (
f ( II Htpy  j
) g )  =  ( f ( II Htpy  J ) g ) )
6 rabeq 3192 . . . . . . . 8  |-  ( ( f ( II Htpy  j
) g )  =  ( f ( II Htpy  J ) g )  ->  { h  e.  ( f ( II Htpy 
j ) g )  |  A. s  e.  ( 0 [,] 1
) ( ( 0 h s )  =  ( f `  0
)  /\  ( 1 h s )  =  ( f `  1
) ) }  =  { h  e.  (
f ( II Htpy  J
) g )  | 
A. s  e.  ( 0 [,] 1 ) ( ( 0 h s )  =  ( f `  0 )  /\  ( 1 h s )  =  ( f `  1 ) ) } )
75, 6syl 17 . . . . . . 7  |-  ( j  =  J  ->  { h  e.  ( f ( II Htpy 
j ) g )  |  A. s  e.  ( 0 [,] 1
) ( ( 0 h s )  =  ( f `  0
)  /\  ( 1 h s )  =  ( f `  1
) ) }  =  { h  e.  (
f ( II Htpy  J
) g )  | 
A. s  e.  ( 0 [,] 1 ) ( ( 0 h s )  =  ( f `  0 )  /\  ( 1 h s )  =  ( f `  1 ) ) } )
83, 3, 7mpt2eq123dv 6717 . . . . . 6  |-  ( j  =  J  ->  (
f  e.  ( II 
Cn  j ) ,  g  e.  ( II 
Cn  j )  |->  { h  e.  ( f ( II Htpy  j ) g )  |  A. s  e.  ( 0 [,] 1 ) ( ( 0 h s )  =  ( f `
 0 )  /\  ( 1 h s )  =  ( f `
 1 ) ) } )  =  ( f  e.  ( II 
Cn  J ) ,  g  e.  ( II 
Cn  J )  |->  { h  e.  ( f ( II Htpy  J ) g )  |  A. s  e.  ( 0 [,] 1 ) ( ( 0 h s )  =  ( f `
 0 )  /\  ( 1 h s )  =  ( f `
 1 ) ) } ) )
9 df-phtpy 22770 . . . . . 6  |-  PHtpy  =  ( j  e.  Top  |->  ( f  e.  ( II 
Cn  j ) ,  g  e.  ( II 
Cn  j )  |->  { h  e.  ( f ( II Htpy  j ) g )  |  A. s  e.  ( 0 [,] 1 ) ( ( 0 h s )  =  ( f `
 0 )  /\  ( 1 h s )  =  ( f `
 1 ) ) } ) )
10 ovex 6678 . . . . . . 7  |-  ( II 
Cn  J )  e. 
_V
1110, 10mpt2ex 7247 . . . . . 6  |-  ( f  e.  ( II  Cn  J ) ,  g  e.  ( II  Cn  J )  |->  { h  e.  ( f ( II Htpy  J ) g )  |  A. s  e.  ( 0 [,] 1
) ( ( 0 h s )  =  ( f `  0
)  /\  ( 1 h s )  =  ( f `  1
) ) } )  e.  _V
128, 9, 11fvmpt 6282 . . . . 5  |-  ( J  e.  Top  ->  ( PHtpy `  J )  =  ( f  e.  ( II  Cn  J ) ,  g  e.  ( II  Cn  J ) 
|->  { h  e.  ( f ( II Htpy  J
) g )  | 
A. s  e.  ( 0 [,] 1 ) ( ( 0 h s )  =  ( f `  0 )  /\  ( 1 h s )  =  ( f `  1 ) ) } ) )
131, 2, 123syl 18 . . . 4  |-  ( ph  ->  ( PHtpy `  J )  =  ( f  e.  ( II  Cn  J
) ,  g  e.  ( II  Cn  J
)  |->  { h  e.  ( f ( II Htpy  J ) g )  |  A. s  e.  ( 0 [,] 1
) ( ( 0 h s )  =  ( f `  0
)  /\  ( 1 h s )  =  ( f `  1
) ) } ) )
14 oveq12 6659 . . . . . 6  |-  ( ( f  =  F  /\  g  =  G )  ->  ( f ( II Htpy  J ) g )  =  ( F ( II Htpy  J ) G ) )
15 simpl 473 . . . . . . . . . 10  |-  ( ( f  =  F  /\  g  =  G )  ->  f  =  F )
1615fveq1d 6193 . . . . . . . . 9  |-  ( ( f  =  F  /\  g  =  G )  ->  ( f `  0
)  =  ( F `
 0 ) )
1716eqeq2d 2632 . . . . . . . 8  |-  ( ( f  =  F  /\  g  =  G )  ->  ( ( 0 h s )  =  ( f `  0 )  <-> 
( 0 h s )  =  ( F `
 0 ) ) )
1815fveq1d 6193 . . . . . . . . 9  |-  ( ( f  =  F  /\  g  =  G )  ->  ( f `  1
)  =  ( F `
 1 ) )
1918eqeq2d 2632 . . . . . . . 8  |-  ( ( f  =  F  /\  g  =  G )  ->  ( ( 1 h s )  =  ( f `  1 )  <-> 
( 1 h s )  =  ( F `
 1 ) ) )
2017, 19anbi12d 747 . . . . . . 7  |-  ( ( f  =  F  /\  g  =  G )  ->  ( ( ( 0 h s )  =  ( f `  0
)  /\  ( 1 h s )  =  ( f `  1
) )  <->  ( (
0 h s )  =  ( F ` 
0 )  /\  (
1 h s )  =  ( F ` 
1 ) ) ) )
2120ralbidv 2986 . . . . . 6  |-  ( ( f  =  F  /\  g  =  G )  ->  ( A. s  e.  ( 0 [,] 1
) ( ( 0 h s )  =  ( f `  0
)  /\  ( 1 h s )  =  ( f `  1
) )  <->  A. s  e.  ( 0 [,] 1
) ( ( 0 h s )  =  ( F `  0
)  /\  ( 1 h s )  =  ( F `  1
) ) ) )
2214, 21rabeqbidv 3195 . . . . 5  |-  ( ( f  =  F  /\  g  =  G )  ->  { h  e.  ( f ( II Htpy  J
) g )  | 
A. s  e.  ( 0 [,] 1 ) ( ( 0 h s )  =  ( f `  0 )  /\  ( 1 h s )  =  ( f `  1 ) ) }  =  {
h  e.  ( F ( II Htpy  J ) G )  |  A. s  e.  ( 0 [,] 1 ) ( ( 0 h s )  =  ( F `
 0 )  /\  ( 1 h s )  =  ( F `
 1 ) ) } )
2322adantl 482 . . . 4  |-  ( (
ph  /\  ( f  =  F  /\  g  =  G ) )  ->  { h  e.  (
f ( II Htpy  J
) g )  | 
A. s  e.  ( 0 [,] 1 ) ( ( 0 h s )  =  ( f `  0 )  /\  ( 1 h s )  =  ( f `  1 ) ) }  =  {
h  e.  ( F ( II Htpy  J ) G )  |  A. s  e.  ( 0 [,] 1 ) ( ( 0 h s )  =  ( F `
 0 )  /\  ( 1 h s )  =  ( F `
 1 ) ) } )
24 isphtpy.3 . . . 4  |-  ( ph  ->  G  e.  ( II 
Cn  J ) )
25 ovex 6678 . . . . . 6  |-  ( F ( II Htpy  J ) G )  e.  _V
2625rabex 4813 . . . . 5  |-  { h  e.  ( F ( II Htpy  J ) G )  |  A. s  e.  ( 0 [,] 1
) ( ( 0 h s )  =  ( F `  0
)  /\  ( 1 h s )  =  ( F `  1
) ) }  e.  _V
2726a1i 11 . . . 4  |-  ( ph  ->  { h  e.  ( F ( II Htpy  J
) G )  | 
A. s  e.  ( 0 [,] 1 ) ( ( 0 h s )  =  ( F `  0 )  /\  ( 1 h s )  =  ( F `  1 ) ) }  e.  _V )
2813, 23, 1, 24, 27ovmpt2d 6788 . . 3  |-  ( ph  ->  ( F ( PHtpy `  J ) G )  =  { h  e.  ( F ( II Htpy  J ) G )  |  A. s  e.  ( 0 [,] 1
) ( ( 0 h s )  =  ( F `  0
)  /\  ( 1 h s )  =  ( F `  1
) ) } )
2928eleq2d 2687 . 2  |-  ( ph  ->  ( H  e.  ( F ( PHtpy `  J
) G )  <->  H  e.  { h  e.  ( F ( II Htpy  J ) G )  |  A. s  e.  ( 0 [,] 1 ) ( ( 0 h s )  =  ( F `
 0 )  /\  ( 1 h s )  =  ( F `
 1 ) ) } ) )
30 oveq 6656 . . . . . 6  |-  ( h  =  H  ->  (
0 h s )  =  ( 0 H s ) )
3130eqeq1d 2624 . . . . 5  |-  ( h  =  H  ->  (
( 0 h s )  =  ( F `
 0 )  <->  ( 0 H s )  =  ( F `  0
) ) )
32 oveq 6656 . . . . . 6  |-  ( h  =  H  ->  (
1 h s )  =  ( 1 H s ) )
3332eqeq1d 2624 . . . . 5  |-  ( h  =  H  ->  (
( 1 h s )  =  ( F `
 1 )  <->  ( 1 H s )  =  ( F `  1
) ) )
3431, 33anbi12d 747 . . . 4  |-  ( h  =  H  ->  (
( ( 0 h s )  =  ( F `  0 )  /\  ( 1 h s )  =  ( F `  1 ) )  <->  ( ( 0 H s )  =  ( F `  0
)  /\  ( 1 H s )  =  ( F `  1
) ) ) )
3534ralbidv 2986 . . 3  |-  ( h  =  H  ->  ( A. s  e.  (
0 [,] 1 ) ( ( 0 h s )  =  ( F `  0 )  /\  ( 1 h s )  =  ( F `  1 ) )  <->  A. s  e.  ( 0 [,] 1 ) ( ( 0 H s )  =  ( F `  0 )  /\  ( 1 H s )  =  ( F `  1 ) ) ) )
3635elrab 3363 . 2  |-  ( H  e.  { h  e.  ( F ( II Htpy  J ) G )  |  A. s  e.  ( 0 [,] 1
) ( ( 0 h s )  =  ( F `  0
)  /\  ( 1 h s )  =  ( F `  1
) ) }  <->  ( H  e.  ( F ( II Htpy  J ) G )  /\  A. s  e.  ( 0 [,] 1
) ( ( 0 H s )  =  ( F `  0
)  /\  ( 1 H s )  =  ( F `  1
) ) ) )
3729, 36syl6bb 276 1  |-  ( ph  ->  ( H  e.  ( F ( PHtpy `  J
) G )  <->  ( H  e.  ( F ( II Htpy  J ) G )  /\  A. s  e.  ( 0 [,] 1
) ( ( 0 H s )  =  ( F `  0
)  /\  ( 1 H s )  =  ( F `  1
) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916   _Vcvv 3200   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   0cc0 9936   1c1 9937   [,]cicc 12178   Topctop 20698    Cn ccn 21028   IIcii 22678   Htpy chtpy 22766   PHtpycphtpy 22767
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-top 20699  df-topon 20716  df-cn 21031  df-phtpy 22770
This theorem is referenced by:  phtpyhtpy  22781  phtpyi  22783  isphtpyd  22785
  Copyright terms: Public domain W3C validator