MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  htpycc Structured version   Visualization version   Unicode version

Theorem htpycc 22779
Description: Concatenate two homotopies. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
htpycc.1  |-  N  =  ( x  e.  X ,  y  e.  (
0 [,] 1 ) 
|->  if ( y  <_ 
( 1  /  2
) ,  ( x L ( 2  x.  y ) ) ,  ( x M ( ( 2  x.  y
)  -  1 ) ) ) )
htpycc.2  |-  ( ph  ->  J  e.  (TopOn `  X ) )
htpycc.4  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
htpycc.5  |-  ( ph  ->  G  e.  ( J  Cn  K ) )
htpycc.6  |-  ( ph  ->  H  e.  ( J  Cn  K ) )
htpycc.7  |-  ( ph  ->  L  e.  ( F ( J Htpy  K ) G ) )
htpycc.8  |-  ( ph  ->  M  e.  ( G ( J Htpy  K ) H ) )
Assertion
Ref Expression
htpycc  |-  ( ph  ->  N  e.  ( F ( J Htpy  K ) H ) )
Distinct variable groups:    x, y, J    x, K, y    x, L, y    x, M, y   
x, X, y    ph, x, y
Allowed substitution hints:    F( x, y)    G( x, y)    H( x, y)    N( x, y)

Proof of Theorem htpycc
Dummy variables  s 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 htpycc.2 . 2  |-  ( ph  ->  J  e.  (TopOn `  X ) )
2 htpycc.4 . 2  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
3 htpycc.6 . 2  |-  ( ph  ->  H  e.  ( J  Cn  K ) )
4 htpycc.1 . . 3  |-  N  =  ( x  e.  X ,  y  e.  (
0 [,] 1 ) 
|->  if ( y  <_ 
( 1  /  2
) ,  ( x L ( 2  x.  y ) ) ,  ( x M ( ( 2  x.  y
)  -  1 ) ) ) )
5 iitopon 22682 . . . . 5  |-  II  e.  (TopOn `  ( 0 [,] 1 ) )
65a1i 11 . . . 4  |-  ( ph  ->  II  e.  (TopOn `  ( 0 [,] 1
) ) )
7 eqid 2622 . . . . 5  |-  ( topGen ` 
ran  (,) )  =  (
topGen `  ran  (,) )
8 eqid 2622 . . . . 5  |-  ( (
topGen `  ran  (,) )t  (
0 [,] ( 1  /  2 ) ) )  =  ( (
topGen `  ran  (,) )t  (
0 [,] ( 1  /  2 ) ) )
9 eqid 2622 . . . . 5  |-  ( (
topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) )  =  ( (
topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) )
10 dfii2 22685 . . . . 5  |-  II  =  ( ( topGen `  ran  (,) )t  ( 0 [,] 1
) )
11 0red 10041 . . . . 5  |-  ( ph  ->  0  e.  RR )
12 1red 10055 . . . . 5  |-  ( ph  ->  1  e.  RR )
13 halfre 11246 . . . . . . 7  |-  ( 1  /  2 )  e.  RR
14 0re 10040 . . . . . . . 8  |-  0  e.  RR
15 halfgt0 11248 . . . . . . . 8  |-  0  <  ( 1  /  2
)
1614, 13, 15ltleii 10160 . . . . . . 7  |-  0  <_  ( 1  /  2
)
17 1re 10039 . . . . . . . 8  |-  1  e.  RR
18 halflt1 11250 . . . . . . . 8  |-  ( 1  /  2 )  <  1
1913, 17, 18ltleii 10160 . . . . . . 7  |-  ( 1  /  2 )  <_ 
1
2014, 17elicc2i 12239 . . . . . . 7  |-  ( ( 1  /  2 )  e.  ( 0 [,] 1 )  <->  ( (
1  /  2 )  e.  RR  /\  0  <_  ( 1  /  2
)  /\  ( 1  /  2 )  <_ 
1 ) )
2113, 16, 19, 20mpbir3an 1244 . . . . . 6  |-  ( 1  /  2 )  e.  ( 0 [,] 1
)
2221a1i 11 . . . . 5  |-  ( ph  ->  ( 1  /  2
)  e.  ( 0 [,] 1 ) )
23 htpycc.5 . . . . . . . . . . . 12  |-  ( ph  ->  G  e.  ( J  Cn  K ) )
24 htpycc.7 . . . . . . . . . . . 12  |-  ( ph  ->  L  e.  ( F ( J Htpy  K ) G ) )
251, 2, 23, 24htpyi 22773 . . . . . . . . . . 11  |-  ( (
ph  /\  s  e.  X )  ->  (
( s L 0 )  =  ( F `
 s )  /\  ( s L 1 )  =  ( G `
 s ) ) )
2625simprd 479 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  X )  ->  (
s L 1 )  =  ( G `  s ) )
27 htpycc.8 . . . . . . . . . . . 12  |-  ( ph  ->  M  e.  ( G ( J Htpy  K ) H ) )
281, 23, 3, 27htpyi 22773 . . . . . . . . . . 11  |-  ( (
ph  /\  s  e.  X )  ->  (
( s M 0 )  =  ( G `
 s )  /\  ( s M 1 )  =  ( H `
 s ) ) )
2928simpld 475 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  X )  ->  (
s M 0 )  =  ( G `  s ) )
3026, 29eqtr4d 2659 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  X )  ->  (
s L 1 )  =  ( s M 0 ) )
3130ralrimiva 2966 . . . . . . . 8  |-  ( ph  ->  A. s  e.  X  ( s L 1 )  =  ( s M 0 ) )
32 oveq1 6657 . . . . . . . . . 10  |-  ( s  =  x  ->  (
s L 1 )  =  ( x L 1 ) )
33 oveq1 6657 . . . . . . . . . 10  |-  ( s  =  x  ->  (
s M 0 )  =  ( x M 0 ) )
3432, 33eqeq12d 2637 . . . . . . . . 9  |-  ( s  =  x  ->  (
( s L 1 )  =  ( s M 0 )  <->  ( x L 1 )  =  ( x M 0 ) ) )
3534rspccva 3308 . . . . . . . 8  |-  ( ( A. s  e.  X  ( s L 1 )  =  ( s M 0 )  /\  x  e.  X )  ->  ( x L 1 )  =  ( x M 0 ) )
3631, 35sylan 488 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  (
x L 1 )  =  ( x M 0 ) )
3736adantrl 752 . . . . . 6  |-  ( (
ph  /\  ( y  =  ( 1  / 
2 )  /\  x  e.  X ) )  -> 
( x L 1 )  =  ( x M 0 ) )
38 simprl 794 . . . . . . . . 9  |-  ( (
ph  /\  ( y  =  ( 1  / 
2 )  /\  x  e.  X ) )  -> 
y  =  ( 1  /  2 ) )
3938oveq2d 6666 . . . . . . . 8  |-  ( (
ph  /\  ( y  =  ( 1  / 
2 )  /\  x  e.  X ) )  -> 
( 2  x.  y
)  =  ( 2  x.  ( 1  / 
2 ) ) )
40 2cn 11091 . . . . . . . . 9  |-  2  e.  CC
41 2ne0 11113 . . . . . . . . 9  |-  2  =/=  0
4240, 41recidi 10756 . . . . . . . 8  |-  ( 2  x.  ( 1  / 
2 ) )  =  1
4339, 42syl6eq 2672 . . . . . . 7  |-  ( (
ph  /\  ( y  =  ( 1  / 
2 )  /\  x  e.  X ) )  -> 
( 2  x.  y
)  =  1 )
4443oveq2d 6666 . . . . . 6  |-  ( (
ph  /\  ( y  =  ( 1  / 
2 )  /\  x  e.  X ) )  -> 
( x L ( 2  x.  y ) )  =  ( x L 1 ) )
4543oveq1d 6665 . . . . . . . 8  |-  ( (
ph  /\  ( y  =  ( 1  / 
2 )  /\  x  e.  X ) )  -> 
( ( 2  x.  y )  -  1 )  =  ( 1  -  1 ) )
46 1m1e0 11089 . . . . . . . 8  |-  ( 1  -  1 )  =  0
4745, 46syl6eq 2672 . . . . . . 7  |-  ( (
ph  /\  ( y  =  ( 1  / 
2 )  /\  x  e.  X ) )  -> 
( ( 2  x.  y )  -  1 )  =  0 )
4847oveq2d 6666 . . . . . 6  |-  ( (
ph  /\  ( y  =  ( 1  / 
2 )  /\  x  e.  X ) )  -> 
( x M ( ( 2  x.  y
)  -  1 ) )  =  ( x M 0 ) )
4937, 44, 483eqtr4d 2666 . . . . 5  |-  ( (
ph  /\  ( y  =  ( 1  / 
2 )  /\  x  e.  X ) )  -> 
( x L ( 2  x.  y ) )  =  ( x M ( ( 2  x.  y )  - 
1 ) ) )
50 retopon 22567 . . . . . . . 8  |-  ( topGen ` 
ran  (,) )  e.  (TopOn `  RR )
51 iccssre 12255 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  ( 1  /  2
)  e.  RR )  ->  ( 0 [,] ( 1  /  2
) )  C_  RR )
5214, 13, 51mp2an 708 . . . . . . . 8  |-  ( 0 [,] ( 1  / 
2 ) )  C_  RR
53 resttopon 20965 . . . . . . . 8  |-  ( ( ( topGen `  ran  (,) )  e.  (TopOn `  RR )  /\  ( 0 [,] (
1  /  2 ) )  C_  RR )  ->  ( ( topGen `  ran  (,) )t  ( 0 [,] (
1  /  2 ) ) )  e.  (TopOn `  ( 0 [,] (
1  /  2 ) ) ) )
5450, 52, 53mp2an 708 . . . . . . 7  |-  ( (
topGen `  ran  (,) )t  (
0 [,] ( 1  /  2 ) ) )  e.  (TopOn `  ( 0 [,] (
1  /  2 ) ) )
5554a1i 11 . . . . . 6  |-  ( ph  ->  ( ( topGen `  ran  (,) )t  ( 0 [,] (
1  /  2 ) ) )  e.  (TopOn `  ( 0 [,] (
1  /  2 ) ) ) )
5655, 1cnmpt2nd 21472 . . . . . 6  |-  ( ph  ->  ( y  e.  ( 0 [,] ( 1  /  2 ) ) ,  x  e.  X  |->  x )  e.  ( ( ( ( topGen ` 
ran  (,) )t  ( 0 [,] ( 1  /  2
) ) )  tX  J )  Cn  J
) )
5755, 1cnmpt1st 21471 . . . . . . 7  |-  ( ph  ->  ( y  e.  ( 0 [,] ( 1  /  2 ) ) ,  x  e.  X  |->  y )  e.  ( ( ( ( topGen ` 
ran  (,) )t  ( 0 [,] ( 1  /  2
) ) )  tX  J )  Cn  (
( topGen `  ran  (,) )t  (
0 [,] ( 1  /  2 ) ) ) ) )
588iihalf1cn 22731 . . . . . . . 8  |-  ( z  e.  ( 0 [,] ( 1  /  2
) )  |->  ( 2  x.  z ) )  e.  ( ( (
topGen `  ran  (,) )t  (
0 [,] ( 1  /  2 ) ) )  Cn  II )
5958a1i 11 . . . . . . 7  |-  ( ph  ->  ( z  e.  ( 0 [,] ( 1  /  2 ) ) 
|->  ( 2  x.  z
) )  e.  ( ( ( topGen `  ran  (,) )t  ( 0 [,] (
1  /  2 ) ) )  Cn  II ) )
60 oveq2 6658 . . . . . . 7  |-  ( z  =  y  ->  (
2  x.  z )  =  ( 2  x.  y ) )
6155, 1, 57, 55, 59, 60cnmpt21 21474 . . . . . 6  |-  ( ph  ->  ( y  e.  ( 0 [,] ( 1  /  2 ) ) ,  x  e.  X  |->  ( 2  x.  y
) )  e.  ( ( ( ( topGen ` 
ran  (,) )t  ( 0 [,] ( 1  /  2
) ) )  tX  J )  Cn  II ) )
621, 2, 23htpycn 22772 . . . . . . 7  |-  ( ph  ->  ( F ( J Htpy 
K ) G ) 
C_  ( ( J 
tX  II )  Cn  K ) )
6362, 24sseldd 3604 . . . . . 6  |-  ( ph  ->  L  e.  ( ( J  tX  II )  Cn  K ) )
6455, 1, 56, 61, 63cnmpt22f 21478 . . . . 5  |-  ( ph  ->  ( y  e.  ( 0 [,] ( 1  /  2 ) ) ,  x  e.  X  |->  ( x L ( 2  x.  y ) ) )  e.  ( ( ( ( topGen ` 
ran  (,) )t  ( 0 [,] ( 1  /  2
) ) )  tX  J )  Cn  K
) )
65 iccssre 12255 . . . . . . . . 9  |-  ( ( ( 1  /  2
)  e.  RR  /\  1  e.  RR )  ->  ( ( 1  / 
2 ) [,] 1
)  C_  RR )
6613, 17, 65mp2an 708 . . . . . . . 8  |-  ( ( 1  /  2 ) [,] 1 )  C_  RR
67 resttopon 20965 . . . . . . . 8  |-  ( ( ( topGen `  ran  (,) )  e.  (TopOn `  RR )  /\  ( ( 1  / 
2 ) [,] 1
)  C_  RR )  ->  ( ( topGen `  ran  (,) )t  ( ( 1  / 
2 ) [,] 1
) )  e.  (TopOn `  ( ( 1  / 
2 ) [,] 1
) ) )
6850, 66, 67mp2an 708 . . . . . . 7  |-  ( (
topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) )  e.  (TopOn `  ( ( 1  / 
2 ) [,] 1
) )
6968a1i 11 . . . . . 6  |-  ( ph  ->  ( ( topGen `  ran  (,) )t  ( ( 1  / 
2 ) [,] 1
) )  e.  (TopOn `  ( ( 1  / 
2 ) [,] 1
) ) )
7069, 1cnmpt2nd 21472 . . . . . 6  |-  ( ph  ->  ( y  e.  ( ( 1  /  2
) [,] 1 ) ,  x  e.  X  |->  x )  e.  ( ( ( ( topGen ` 
ran  (,) )t  ( ( 1  /  2 ) [,] 1 ) )  tX  J )  Cn  J
) )
7169, 1cnmpt1st 21471 . . . . . . 7  |-  ( ph  ->  ( y  e.  ( ( 1  /  2
) [,] 1 ) ,  x  e.  X  |->  y )  e.  ( ( ( ( topGen ` 
ran  (,) )t  ( ( 1  /  2 ) [,] 1 ) )  tX  J )  Cn  (
( topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) ) ) )
729iihalf2cn 22733 . . . . . . . 8  |-  ( z  e.  ( ( 1  /  2 ) [,] 1 )  |->  ( ( 2  x.  z )  -  1 ) )  e.  ( ( (
topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) )  Cn  II )
7372a1i 11 . . . . . . 7  |-  ( ph  ->  ( z  e.  ( ( 1  /  2
) [,] 1 ) 
|->  ( ( 2  x.  z )  -  1 ) )  e.  ( ( ( topGen `  ran  (,) )t  ( ( 1  / 
2 ) [,] 1
) )  Cn  II ) )
7460oveq1d 6665 . . . . . . 7  |-  ( z  =  y  ->  (
( 2  x.  z
)  -  1 )  =  ( ( 2  x.  y )  - 
1 ) )
7569, 1, 71, 69, 73, 74cnmpt21 21474 . . . . . 6  |-  ( ph  ->  ( y  e.  ( ( 1  /  2
) [,] 1 ) ,  x  e.  X  |->  ( ( 2  x.  y )  -  1 ) )  e.  ( ( ( ( topGen ` 
ran  (,) )t  ( ( 1  /  2 ) [,] 1 ) )  tX  J )  Cn  II ) )
761, 23, 3htpycn 22772 . . . . . . 7  |-  ( ph  ->  ( G ( J Htpy 
K ) H ) 
C_  ( ( J 
tX  II )  Cn  K ) )
7776, 27sseldd 3604 . . . . . 6  |-  ( ph  ->  M  e.  ( ( J  tX  II )  Cn  K ) )
7869, 1, 70, 75, 77cnmpt22f 21478 . . . . 5  |-  ( ph  ->  ( y  e.  ( ( 1  /  2
) [,] 1 ) ,  x  e.  X  |->  ( x M ( ( 2  x.  y
)  -  1 ) ) )  e.  ( ( ( ( topGen ` 
ran  (,) )t  ( ( 1  /  2 ) [,] 1 ) )  tX  J )  Cn  K
) )
797, 8, 9, 10, 11, 12, 22, 1, 49, 64, 78cnmpt2pc 22727 . . . 4  |-  ( ph  ->  ( y  e.  ( 0 [,] 1 ) ,  x  e.  X  |->  if ( y  <_ 
( 1  /  2
) ,  ( x L ( 2  x.  y ) ) ,  ( x M ( ( 2  x.  y
)  -  1 ) ) ) )  e.  ( ( II  tX  J )  Cn  K
) )
806, 1, 79cnmptcom 21481 . . 3  |-  ( ph  ->  ( x  e.  X ,  y  e.  (
0 [,] 1 ) 
|->  if ( y  <_ 
( 1  /  2
) ,  ( x L ( 2  x.  y ) ) ,  ( x M ( ( 2  x.  y
)  -  1 ) ) ) )  e.  ( ( J  tX  II )  Cn  K
) )
814, 80syl5eqel 2705 . 2  |-  ( ph  ->  N  e.  ( ( J  tX  II )  Cn  K ) )
82 simpr 477 . . . 4  |-  ( (
ph  /\  s  e.  X )  ->  s  e.  X )
83 0elunit 12290 . . . 4  |-  0  e.  ( 0 [,] 1
)
84 simpr 477 . . . . . . . 8  |-  ( ( x  =  s  /\  y  =  0 )  ->  y  =  0 )
8584, 16syl6eqbr 4692 . . . . . . 7  |-  ( ( x  =  s  /\  y  =  0 )  ->  y  <_  (
1  /  2 ) )
8685iftrued 4094 . . . . . 6  |-  ( ( x  =  s  /\  y  =  0 )  ->  if ( y  <_  ( 1  / 
2 ) ,  ( x L ( 2  x.  y ) ) ,  ( x M ( ( 2  x.  y )  -  1 ) ) )  =  ( x L ( 2  x.  y ) ) )
87 simpl 473 . . . . . . 7  |-  ( ( x  =  s  /\  y  =  0 )  ->  x  =  s )
8884oveq2d 6666 . . . . . . . 8  |-  ( ( x  =  s  /\  y  =  0 )  ->  ( 2  x.  y )  =  ( 2  x.  0 ) )
89 2t0e0 11183 . . . . . . . 8  |-  ( 2  x.  0 )  =  0
9088, 89syl6eq 2672 . . . . . . 7  |-  ( ( x  =  s  /\  y  =  0 )  ->  ( 2  x.  y )  =  0 )
9187, 90oveq12d 6668 . . . . . 6  |-  ( ( x  =  s  /\  y  =  0 )  ->  ( x L ( 2  x.  y
) )  =  ( s L 0 ) )
9286, 91eqtrd 2656 . . . . 5  |-  ( ( x  =  s  /\  y  =  0 )  ->  if ( y  <_  ( 1  / 
2 ) ,  ( x L ( 2  x.  y ) ) ,  ( x M ( ( 2  x.  y )  -  1 ) ) )  =  ( s L 0 ) )
93 ovex 6678 . . . . 5  |-  ( s L 0 )  e. 
_V
9492, 4, 93ovmpt2a 6791 . . . 4  |-  ( ( s  e.  X  /\  0  e.  ( 0 [,] 1 ) )  ->  ( s N 0 )  =  ( s L 0 ) )
9582, 83, 94sylancl 694 . . 3  |-  ( (
ph  /\  s  e.  X )  ->  (
s N 0 )  =  ( s L 0 ) )
9625simpld 475 . . 3  |-  ( (
ph  /\  s  e.  X )  ->  (
s L 0 )  =  ( F `  s ) )
9795, 96eqtrd 2656 . 2  |-  ( (
ph  /\  s  e.  X )  ->  (
s N 0 )  =  ( F `  s ) )
98 1elunit 12291 . . . 4  |-  1  e.  ( 0 [,] 1
)
9913, 17ltnlei 10158 . . . . . . . . 9  |-  ( ( 1  /  2 )  <  1  <->  -.  1  <_  ( 1  /  2
) )
10018, 99mpbi 220 . . . . . . . 8  |-  -.  1  <_  ( 1  /  2
)
101 simpr 477 . . . . . . . . 9  |-  ( ( x  =  s  /\  y  =  1 )  ->  y  =  1 )
102101breq1d 4663 . . . . . . . 8  |-  ( ( x  =  s  /\  y  =  1 )  ->  ( y  <_ 
( 1  /  2
)  <->  1  <_  (
1  /  2 ) ) )
103100, 102mtbiri 317 . . . . . . 7  |-  ( ( x  =  s  /\  y  =  1 )  ->  -.  y  <_  ( 1  /  2 ) )
104103iffalsed 4097 . . . . . 6  |-  ( ( x  =  s  /\  y  =  1 )  ->  if ( y  <_  ( 1  / 
2 ) ,  ( x L ( 2  x.  y ) ) ,  ( x M ( ( 2  x.  y )  -  1 ) ) )  =  ( x M ( ( 2  x.  y
)  -  1 ) ) )
105 simpl 473 . . . . . . 7  |-  ( ( x  =  s  /\  y  =  1 )  ->  x  =  s )
106101oveq2d 6666 . . . . . . . . . 10  |-  ( ( x  =  s  /\  y  =  1 )  ->  ( 2  x.  y )  =  ( 2  x.  1 ) )
107 2t1e2 11176 . . . . . . . . . 10  |-  ( 2  x.  1 )  =  2
108106, 107syl6eq 2672 . . . . . . . . 9  |-  ( ( x  =  s  /\  y  =  1 )  ->  ( 2  x.  y )  =  2 )
109108oveq1d 6665 . . . . . . . 8  |-  ( ( x  =  s  /\  y  =  1 )  ->  ( ( 2  x.  y )  - 
1 )  =  ( 2  -  1 ) )
110 2m1e1 11135 . . . . . . . 8  |-  ( 2  -  1 )  =  1
111109, 110syl6eq 2672 . . . . . . 7  |-  ( ( x  =  s  /\  y  =  1 )  ->  ( ( 2  x.  y )  - 
1 )  =  1 )
112105, 111oveq12d 6668 . . . . . 6  |-  ( ( x  =  s  /\  y  =  1 )  ->  ( x M ( ( 2  x.  y )  -  1 ) )  =  ( s M 1 ) )
113104, 112eqtrd 2656 . . . . 5  |-  ( ( x  =  s  /\  y  =  1 )  ->  if ( y  <_  ( 1  / 
2 ) ,  ( x L ( 2  x.  y ) ) ,  ( x M ( ( 2  x.  y )  -  1 ) ) )  =  ( s M 1 ) )
114 ovex 6678 . . . . 5  |-  ( s M 1 )  e. 
_V
115113, 4, 114ovmpt2a 6791 . . . 4  |-  ( ( s  e.  X  /\  1  e.  ( 0 [,] 1 ) )  ->  ( s N 1 )  =  ( s M 1 ) )
11682, 98, 115sylancl 694 . . 3  |-  ( (
ph  /\  s  e.  X )  ->  (
s N 1 )  =  ( s M 1 ) )
11728simprd 479 . . 3  |-  ( (
ph  /\  s  e.  X )  ->  (
s M 1 )  =  ( H `  s ) )
118116, 117eqtrd 2656 . 2  |-  ( (
ph  /\  s  e.  X )  ->  (
s N 1 )  =  ( H `  s ) )
1191, 2, 3, 81, 97, 118ishtpyd 22774 1  |-  ( ph  ->  N  e.  ( F ( J Htpy  K ) H ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    C_ wss 3574   ifcif 4086   class class class wbr 4653    |-> cmpt 4729   ran crn 5115   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   RRcr 9935   0cc0 9936   1c1 9937    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   2c2 11070   (,)cioo 12175   [,]cicc 12178   ↾t crest 16081   topGenctg 16098  TopOnctopon 20715    Cn ccn 21028    tX ctx 21363   IIcii 22678   Htpy chtpy 22766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-cn 21031  df-cnp 21032  df-tx 21365  df-hmeo 21558  df-xms 22125  df-ms 22126  df-tms 22127  df-ii 22680  df-htpy 22769
This theorem is referenced by:  phtpycc  22790
  Copyright terms: Public domain W3C validator