Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lidlrng Structured version   Visualization version   Unicode version

Theorem lidlrng 41927
Description: A (left) ideal of a ring is a non-unital ring. (Contributed by AV, 17-Feb-2020.)
Hypotheses
Ref Expression
lidlabl.l  |-  L  =  (LIdeal `  R )
lidlabl.i  |-  I  =  ( Rs  U )
Assertion
Ref Expression
lidlrng  |-  ( ( R  e.  Ring  /\  U  e.  L )  ->  I  e. Rng )

Proof of Theorem lidlrng
Dummy variables  a 
b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lidlabl.l . . 3  |-  L  =  (LIdeal `  R )
2 lidlabl.i . . 3  |-  I  =  ( Rs  U )
31, 2lidlabl 41924 . 2  |-  ( ( R  e.  Ring  /\  U  e.  L )  ->  I  e.  Abel )
41, 2lidlmsgrp 41926 . 2  |-  ( ( R  e.  Ring  /\  U  e.  L )  ->  (mulGrp `  I )  e. SGrp )
5 simpll 790 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  U  e.  L )  /\  ( a  e.  ( Base `  I
)  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  R  e.  Ring )
61, 2lidlssbas 41922 . . . . . . . . . 10  |-  ( U  e.  L  ->  ( Base `  I )  C_  ( Base `  R )
)
76sseld 3602 . . . . . . . . 9  |-  ( U  e.  L  ->  (
a  e.  ( Base `  I )  ->  a  e.  ( Base `  R
) ) )
86sseld 3602 . . . . . . . . 9  |-  ( U  e.  L  ->  (
b  e.  ( Base `  I )  ->  b  e.  ( Base `  R
) ) )
96sseld 3602 . . . . . . . . 9  |-  ( U  e.  L  ->  (
c  e.  ( Base `  I )  ->  c  e.  ( Base `  R
) ) )
107, 8, 93anim123d 1406 . . . . . . . 8  |-  ( U  e.  L  ->  (
( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) )  -> 
( a  e.  (
Base `  R )  /\  b  e.  ( Base `  R )  /\  c  e.  ( Base `  R ) ) ) )
1110adantl 482 . . . . . . 7  |-  ( ( R  e.  Ring  /\  U  e.  L )  ->  (
( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) )  -> 
( a  e.  (
Base `  R )  /\  b  e.  ( Base `  R )  /\  c  e.  ( Base `  R ) ) ) )
1211imp 445 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  U  e.  L )  /\  ( a  e.  ( Base `  I
)  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  ( a  e.  ( Base `  R
)  /\  b  e.  ( Base `  R )  /\  c  e.  ( Base `  R ) ) )
13 eqid 2622 . . . . . . 7  |-  ( Base `  R )  =  (
Base `  R )
14 eqid 2622 . . . . . . 7  |-  ( +g  `  R )  =  ( +g  `  R )
15 eqid 2622 . . . . . . 7  |-  ( .r
`  R )  =  ( .r `  R
)
1613, 14, 15ringdi 18566 . . . . . 6  |-  ( ( R  e.  Ring  /\  (
a  e.  ( Base `  R )  /\  b  e.  ( Base `  R
)  /\  c  e.  ( Base `  R )
) )  ->  (
a ( .r `  R ) ( b ( +g  `  R
) c ) )  =  ( ( a ( .r `  R
) b ) ( +g  `  R ) ( a ( .r
`  R ) c ) ) )
175, 12, 16syl2anc 693 . . . . 5  |-  ( ( ( R  e.  Ring  /\  U  e.  L )  /\  ( a  e.  ( Base `  I
)  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  ( a
( .r `  R
) ( b ( +g  `  R ) c ) )  =  ( ( a ( .r `  R ) b ) ( +g  `  R ) ( a ( .r `  R
) c ) ) )
1813, 14, 15ringdir 18567 . . . . . 6  |-  ( ( R  e.  Ring  /\  (
a  e.  ( Base `  R )  /\  b  e.  ( Base `  R
)  /\  c  e.  ( Base `  R )
) )  ->  (
( a ( +g  `  R ) b ) ( .r `  R
) c )  =  ( ( a ( .r `  R ) c ) ( +g  `  R ) ( b ( .r `  R
) c ) ) )
195, 12, 18syl2anc 693 . . . . 5  |-  ( ( ( R  e.  Ring  /\  U  e.  L )  /\  ( a  e.  ( Base `  I
)  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  ( (
a ( +g  `  R
) b ) ( .r `  R ) c )  =  ( ( a ( .r
`  R ) c ) ( +g  `  R
) ( b ( .r `  R ) c ) ) )
2017, 19jca 554 . . . 4  |-  ( ( ( R  e.  Ring  /\  U  e.  L )  /\  ( a  e.  ( Base `  I
)  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  ( (
a ( .r `  R ) ( b ( +g  `  R
) c ) )  =  ( ( a ( .r `  R
) b ) ( +g  `  R ) ( a ( .r
`  R ) c ) )  /\  (
( a ( +g  `  R ) b ) ( .r `  R
) c )  =  ( ( a ( .r `  R ) c ) ( +g  `  R ) ( b ( .r `  R
) c ) ) ) )
2120ralrimivvva 2972 . . 3  |-  ( ( R  e.  Ring  /\  U  e.  L )  ->  A. a  e.  ( Base `  I
) A. b  e.  ( Base `  I
) A. c  e.  ( Base `  I
) ( ( a ( .r `  R
) ( b ( +g  `  R ) c ) )  =  ( ( a ( .r `  R ) b ) ( +g  `  R ) ( a ( .r `  R
) c ) )  /\  ( ( a ( +g  `  R
) b ) ( .r `  R ) c )  =  ( ( a ( .r
`  R ) c ) ( +g  `  R
) ( b ( .r `  R ) c ) ) ) )
222, 15ressmulr 16006 . . . . . . . . . 10  |-  ( U  e.  L  ->  ( .r `  R )  =  ( .r `  I
) )
2322eqcomd 2628 . . . . . . . . 9  |-  ( U  e.  L  ->  ( .r `  I )  =  ( .r `  R
) )
24 eqidd 2623 . . . . . . . . 9  |-  ( U  e.  L  ->  a  =  a )
252, 14ressplusg 15993 . . . . . . . . . . 11  |-  ( U  e.  L  ->  ( +g  `  R )  =  ( +g  `  I
) )
2625eqcomd 2628 . . . . . . . . . 10  |-  ( U  e.  L  ->  ( +g  `  I )  =  ( +g  `  R
) )
2726oveqd 6667 . . . . . . . . 9  |-  ( U  e.  L  ->  (
b ( +g  `  I
) c )  =  ( b ( +g  `  R ) c ) )
2823, 24, 27oveq123d 6671 . . . . . . . 8  |-  ( U  e.  L  ->  (
a ( .r `  I ) ( b ( +g  `  I
) c ) )  =  ( a ( .r `  R ) ( b ( +g  `  R ) c ) ) )
2923oveqd 6667 . . . . . . . . 9  |-  ( U  e.  L  ->  (
a ( .r `  I ) b )  =  ( a ( .r `  R ) b ) )
3023oveqd 6667 . . . . . . . . 9  |-  ( U  e.  L  ->  (
a ( .r `  I ) c )  =  ( a ( .r `  R ) c ) )
3126, 29, 30oveq123d 6671 . . . . . . . 8  |-  ( U  e.  L  ->  (
( a ( .r
`  I ) b ) ( +g  `  I
) ( a ( .r `  I ) c ) )  =  ( ( a ( .r `  R ) b ) ( +g  `  R ) ( a ( .r `  R
) c ) ) )
3228, 31eqeq12d 2637 . . . . . . 7  |-  ( U  e.  L  ->  (
( a ( .r
`  I ) ( b ( +g  `  I
) c ) )  =  ( ( a ( .r `  I
) b ) ( +g  `  I ) ( a ( .r
`  I ) c ) )  <->  ( a
( .r `  R
) ( b ( +g  `  R ) c ) )  =  ( ( a ( .r `  R ) b ) ( +g  `  R ) ( a ( .r `  R
) c ) ) ) )
3326oveqd 6667 . . . . . . . . 9  |-  ( U  e.  L  ->  (
a ( +g  `  I
) b )  =  ( a ( +g  `  R ) b ) )
34 eqidd 2623 . . . . . . . . 9  |-  ( U  e.  L  ->  c  =  c )
3523, 33, 34oveq123d 6671 . . . . . . . 8  |-  ( U  e.  L  ->  (
( a ( +g  `  I ) b ) ( .r `  I
) c )  =  ( ( a ( +g  `  R ) b ) ( .r
`  R ) c ) )
3623oveqd 6667 . . . . . . . . 9  |-  ( U  e.  L  ->  (
b ( .r `  I ) c )  =  ( b ( .r `  R ) c ) )
3726, 30, 36oveq123d 6671 . . . . . . . 8  |-  ( U  e.  L  ->  (
( a ( .r
`  I ) c ) ( +g  `  I
) ( b ( .r `  I ) c ) )  =  ( ( a ( .r `  R ) c ) ( +g  `  R ) ( b ( .r `  R
) c ) ) )
3835, 37eqeq12d 2637 . . . . . . 7  |-  ( U  e.  L  ->  (
( ( a ( +g  `  I ) b ) ( .r
`  I ) c )  =  ( ( a ( .r `  I ) c ) ( +g  `  I
) ( b ( .r `  I ) c ) )  <->  ( (
a ( +g  `  R
) b ) ( .r `  R ) c )  =  ( ( a ( .r
`  R ) c ) ( +g  `  R
) ( b ( .r `  R ) c ) ) ) )
3932, 38anbi12d 747 . . . . . 6  |-  ( U  e.  L  ->  (
( ( a ( .r `  I ) ( b ( +g  `  I ) c ) )  =  ( ( a ( .r `  I ) b ) ( +g  `  I
) ( a ( .r `  I ) c ) )  /\  ( ( a ( +g  `  I ) b ) ( .r
`  I ) c )  =  ( ( a ( .r `  I ) c ) ( +g  `  I
) ( b ( .r `  I ) c ) ) )  <-> 
( ( a ( .r `  R ) ( b ( +g  `  R ) c ) )  =  ( ( a ( .r `  R ) b ) ( +g  `  R
) ( a ( .r `  R ) c ) )  /\  ( ( a ( +g  `  R ) b ) ( .r
`  R ) c )  =  ( ( a ( .r `  R ) c ) ( +g  `  R
) ( b ( .r `  R ) c ) ) ) ) )
4039adantl 482 . . . . 5  |-  ( ( R  e.  Ring  /\  U  e.  L )  ->  (
( ( a ( .r `  I ) ( b ( +g  `  I ) c ) )  =  ( ( a ( .r `  I ) b ) ( +g  `  I
) ( a ( .r `  I ) c ) )  /\  ( ( a ( +g  `  I ) b ) ( .r
`  I ) c )  =  ( ( a ( .r `  I ) c ) ( +g  `  I
) ( b ( .r `  I ) c ) ) )  <-> 
( ( a ( .r `  R ) ( b ( +g  `  R ) c ) )  =  ( ( a ( .r `  R ) b ) ( +g  `  R
) ( a ( .r `  R ) c ) )  /\  ( ( a ( +g  `  R ) b ) ( .r
`  R ) c )  =  ( ( a ( .r `  R ) c ) ( +g  `  R
) ( b ( .r `  R ) c ) ) ) ) )
4140ralbidv 2986 . . . 4  |-  ( ( R  e.  Ring  /\  U  e.  L )  ->  ( A. c  e.  ( Base `  I ) ( ( a ( .r
`  I ) ( b ( +g  `  I
) c ) )  =  ( ( a ( .r `  I
) b ) ( +g  `  I ) ( a ( .r
`  I ) c ) )  /\  (
( a ( +g  `  I ) b ) ( .r `  I
) c )  =  ( ( a ( .r `  I ) c ) ( +g  `  I ) ( b ( .r `  I
) c ) ) )  <->  A. c  e.  (
Base `  I )
( ( a ( .r `  R ) ( b ( +g  `  R ) c ) )  =  ( ( a ( .r `  R ) b ) ( +g  `  R
) ( a ( .r `  R ) c ) )  /\  ( ( a ( +g  `  R ) b ) ( .r
`  R ) c )  =  ( ( a ( .r `  R ) c ) ( +g  `  R
) ( b ( .r `  R ) c ) ) ) ) )
42412ralbidv 2989 . . 3  |-  ( ( R  e.  Ring  /\  U  e.  L )  ->  ( A. a  e.  ( Base `  I ) A. b  e.  ( Base `  I ) A. c  e.  ( Base `  I
) ( ( a ( .r `  I
) ( b ( +g  `  I ) c ) )  =  ( ( a ( .r `  I ) b ) ( +g  `  I ) ( a ( .r `  I
) c ) )  /\  ( ( a ( +g  `  I
) b ) ( .r `  I ) c )  =  ( ( a ( .r
`  I ) c ) ( +g  `  I
) ( b ( .r `  I ) c ) ) )  <->  A. a  e.  ( Base `  I ) A. b  e.  ( Base `  I ) A. c  e.  ( Base `  I
) ( ( a ( .r `  R
) ( b ( +g  `  R ) c ) )  =  ( ( a ( .r `  R ) b ) ( +g  `  R ) ( a ( .r `  R
) c ) )  /\  ( ( a ( +g  `  R
) b ) ( .r `  R ) c )  =  ( ( a ( .r
`  R ) c ) ( +g  `  R
) ( b ( .r `  R ) c ) ) ) ) )
4321, 42mpbird 247 . 2  |-  ( ( R  e.  Ring  /\  U  e.  L )  ->  A. a  e.  ( Base `  I
) A. b  e.  ( Base `  I
) A. c  e.  ( Base `  I
) ( ( a ( .r `  I
) ( b ( +g  `  I ) c ) )  =  ( ( a ( .r `  I ) b ) ( +g  `  I ) ( a ( .r `  I
) c ) )  /\  ( ( a ( +g  `  I
) b ) ( .r `  I ) c )  =  ( ( a ( .r
`  I ) c ) ( +g  `  I
) ( b ( .r `  I ) c ) ) ) )
44 eqid 2622 . . 3  |-  ( Base `  I )  =  (
Base `  I )
45 eqid 2622 . . 3  |-  (mulGrp `  I )  =  (mulGrp `  I )
46 eqid 2622 . . 3  |-  ( +g  `  I )  =  ( +g  `  I )
47 eqid 2622 . . 3  |-  ( .r
`  I )  =  ( .r `  I
)
4844, 45, 46, 47isrng 41876 . 2  |-  ( I  e. Rng 
<->  ( I  e.  Abel  /\  (mulGrp `  I )  e. SGrp  /\  A. a  e.  ( Base `  I
) A. b  e.  ( Base `  I
) A. c  e.  ( Base `  I
) ( ( a ( .r `  I
) ( b ( +g  `  I ) c ) )  =  ( ( a ( .r `  I ) b ) ( +g  `  I ) ( a ( .r `  I
) c ) )  /\  ( ( a ( +g  `  I
) b ) ( .r `  I ) c )  =  ( ( a ( .r
`  I ) c ) ( +g  `  I
) ( b ( .r `  I ) c ) ) ) ) )
493, 4, 43, 48syl3anbrc 1246 1  |-  ( ( R  e.  Ring  /\  U  e.  L )  ->  I  e. Rng )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   ` cfv 5888  (class class class)co 6650   Basecbs 15857   ↾s cress 15858   +g cplusg 15941   .rcmulr 15942  SGrpcsgrp 17283   Abelcabl 18194  mulGrpcmgp 18489   Ringcrg 18547  LIdealclidl 19170  Rngcrng 41874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-subrg 18778  df-lmod 18865  df-lss 18933  df-sra 19172  df-rgmod 19173  df-lidl 19174  df-rng0 41875
This theorem is referenced by:  zlidlring  41928  uzlidlring  41929  2zrng  41935
  Copyright terms: Public domain W3C validator