MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgrrusgr Structured version   Visualization version   Unicode version

Theorem cusgrrusgr 26477
Description: A complete simple graph with n vertices (at least one) is (n-1)-regular. (Contributed by Alexander van der Vekens, 10-Jul-2018.) (Revised by AV, 26-Dec-2020.)
Hypothesis
Ref Expression
cusgrrusgr.v  |-  V  =  (Vtx `  G )
Assertion
Ref Expression
cusgrrusgr  |-  ( ( G  e. ComplUSGraph  /\  V  e. 
Fin  /\  V  =/=  (/) )  ->  G RegUSGraph  ( (
# `  V )  -  1 ) )

Proof of Theorem cusgrrusgr
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 cusgrusgr 26315 . . 3  |-  ( G  e. ComplUSGraph  ->  G  e. USGraph  )
213ad2ant1 1082 . 2  |-  ( ( G  e. ComplUSGraph  /\  V  e. 
Fin  /\  V  =/=  (/) )  ->  G  e. USGraph  )
3 hashnncl 13157 . . . . 5  |-  ( V  e.  Fin  ->  (
( # `  V )  e.  NN  <->  V  =/=  (/) ) )
4 nnm1nn0 11334 . . . . . 6  |-  ( (
# `  V )  e.  NN  ->  ( ( # `
 V )  - 
1 )  e.  NN0 )
54nn0xnn0d 11372 . . . . 5  |-  ( (
# `  V )  e.  NN  ->  ( ( # `
 V )  - 
1 )  e. NN0* )
63, 5syl6bir 244 . . . 4  |-  ( V  e.  Fin  ->  ( V  =/=  (/)  ->  ( ( # `
 V )  - 
1 )  e. NN0* )
)
76imp 445 . . 3  |-  ( ( V  e.  Fin  /\  V  =/=  (/) )  ->  (
( # `  V )  -  1 )  e. NN0*
)
873adant1 1079 . 2  |-  ( ( G  e. ComplUSGraph  /\  V  e. 
Fin  /\  V  =/=  (/) )  ->  ( ( # `
 V )  - 
1 )  e. NN0* )
9 cusgrcplgr 26316 . . . . . 6  |-  ( G  e. ComplUSGraph  ->  G  e. ComplGraph )
1093ad2ant1 1082 . . . . 5  |-  ( ( G  e. ComplUSGraph  /\  V  e. 
Fin  /\  V  =/=  (/) )  ->  G  e. ComplGraph )
11 cusgrrusgr.v . . . . . 6  |-  V  =  (Vtx `  G )
1211nbcplgr 26330 . . . . 5  |-  ( ( G  e. ComplGraph  /\  v  e.  V )  ->  ( G NeighbVtx  v )  =  ( V  \  { v } ) )
1310, 12sylan 488 . . . 4  |-  ( ( ( G  e. ComplUSGraph  /\  V  e.  Fin  /\  V  =/=  (/) )  /\  v  e.  V )  ->  ( G NeighbVtx  v )  =  ( V  \  { v } ) )
1413ralrimiva 2966 . . 3  |-  ( ( G  e. ComplUSGraph  /\  V  e. 
Fin  /\  V  =/=  (/) )  ->  A. v  e.  V  ( G NeighbVtx  v )  =  ( V 
\  { v } ) )
152anim1i 592 . . . . . . . 8  |-  ( ( ( G  e. ComplUSGraph  /\  V  e.  Fin  /\  V  =/=  (/) )  /\  v  e.  V )  ->  ( G  e. USGraph  /\  v  e.  V ) )
1615adantr 481 . . . . . . 7  |-  ( ( ( ( G  e. ComplUSGraph  /\  V  e.  Fin  /\  V  =/=  (/) )  /\  v  e.  V )  /\  ( G NeighbVtx  v )  =  ( V  \  { v } ) )  -> 
( G  e. USGraph  /\  v  e.  V ) )
1711hashnbusgrvd 26424 . . . . . . 7  |-  ( ( G  e. USGraph  /\  v  e.  V )  ->  ( # `
 ( G NeighbVtx  v ) )  =  ( (VtxDeg `  G ) `  v
) )
1816, 17syl 17 . . . . . 6  |-  ( ( ( ( G  e. ComplUSGraph  /\  V  e.  Fin  /\  V  =/=  (/) )  /\  v  e.  V )  /\  ( G NeighbVtx  v )  =  ( V  \  { v } ) )  -> 
( # `  ( G NeighbVtx  v ) )  =  ( (VtxDeg `  G
) `  v )
)
19 fveq2 6191 . . . . . . 7  |-  ( ( G NeighbVtx  v )  =  ( V  \  { v } )  ->  ( # `
 ( G NeighbVtx  v ) )  =  ( # `  ( V  \  {
v } ) ) )
20 hashdifsn 13202 . . . . . . . 8  |-  ( ( V  e.  Fin  /\  v  e.  V )  ->  ( # `  ( V  \  { v } ) )  =  ( ( # `  V
)  -  1 ) )
21203ad2antl2 1224 . . . . . . 7  |-  ( ( ( G  e. ComplUSGraph  /\  V  e.  Fin  /\  V  =/=  (/) )  /\  v  e.  V )  ->  ( # `
 ( V  \  { v } ) )  =  ( (
# `  V )  -  1 ) )
2219, 21sylan9eqr 2678 . . . . . 6  |-  ( ( ( ( G  e. ComplUSGraph  /\  V  e.  Fin  /\  V  =/=  (/) )  /\  v  e.  V )  /\  ( G NeighbVtx  v )  =  ( V  \  { v } ) )  -> 
( # `  ( G NeighbVtx  v ) )  =  ( ( # `  V
)  -  1 ) )
2318, 22eqtr3d 2658 . . . . 5  |-  ( ( ( ( G  e. ComplUSGraph  /\  V  e.  Fin  /\  V  =/=  (/) )  /\  v  e.  V )  /\  ( G NeighbVtx  v )  =  ( V  \  { v } ) )  -> 
( (VtxDeg `  G
) `  v )  =  ( ( # `  V )  -  1 ) )
2423ex 450 . . . 4  |-  ( ( ( G  e. ComplUSGraph  /\  V  e.  Fin  /\  V  =/=  (/) )  /\  v  e.  V )  ->  (
( G NeighbVtx  v )  =  ( V  \  {
v } )  -> 
( (VtxDeg `  G
) `  v )  =  ( ( # `  V )  -  1 ) ) )
2524ralimdva 2962 . . 3  |-  ( ( G  e. ComplUSGraph  /\  V  e. 
Fin  /\  V  =/=  (/) )  ->  ( A. v  e.  V  ( G NeighbVtx  v )  =  ( V  \  { v } )  ->  A. v  e.  V  ( (VtxDeg `  G ) `  v
)  =  ( (
# `  V )  -  1 ) ) )
2614, 25mpd 15 . 2  |-  ( ( G  e. ComplUSGraph  /\  V  e. 
Fin  /\  V  =/=  (/) )  ->  A. v  e.  V  ( (VtxDeg `  G ) `  v
)  =  ( (
# `  V )  -  1 ) )
27 simp1 1061 . . 3  |-  ( ( G  e. ComplUSGraph  /\  V  e. 
Fin  /\  V  =/=  (/) )  ->  G  e. ComplUSGraph )
28 ovex 6678 . . 3  |-  ( (
# `  V )  -  1 )  e. 
_V
29 eqid 2622 . . . 4  |-  (VtxDeg `  G )  =  (VtxDeg `  G )
3011, 29isrusgr0 26462 . . 3  |-  ( ( G  e. ComplUSGraph  /\  ( (
# `  V )  -  1 )  e. 
_V )  ->  ( G RegUSGraph  ( ( # `  V
)  -  1 )  <-> 
( G  e. USGraph  /\  (
( # `  V )  -  1 )  e. NN0*  /\  A. v  e.  V  ( (VtxDeg `  G ) `  v )  =  ( ( # `  V
)  -  1 ) ) ) )
3127, 28, 30sylancl 694 . 2  |-  ( ( G  e. ComplUSGraph  /\  V  e. 
Fin  /\  V  =/=  (/) )  ->  ( G RegUSGraph  ( ( # `  V
)  -  1 )  <-> 
( G  e. USGraph  /\  (
( # `  V )  -  1 )  e. NN0*  /\  A. v  e.  V  ( (VtxDeg `  G ) `  v )  =  ( ( # `  V
)  -  1 ) ) ) )
322, 8, 26, 31mpbir3and 1245 1  |-  ( ( G  e. ComplUSGraph  /\  V  e. 
Fin  /\  V  =/=  (/) )  ->  G RegUSGraph  ( (
# `  V )  -  1 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   _Vcvv 3200    \ cdif 3571   (/)c0 3915   {csn 4177   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Fincfn 7955   1c1 9937    - cmin 10266   NNcn 11020  NN0*cxnn0 11363   #chash 13117  Vtxcvtx 25874   USGraph cusgr 26044   NeighbVtx cnbgr 26224  ComplGraphccplgr 26226  ComplUSGraphccusgr 26227  VtxDegcvtxdg 26361   RegUSGraph crusgr 26452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-xadd 11947  df-fz 12327  df-hash 13118  df-edg 25940  df-uhgr 25953  df-ushgr 25954  df-upgr 25977  df-umgr 25978  df-uspgr 26045  df-usgr 26046  df-nbgr 26228  df-uvtxa 26230  df-cplgr 26231  df-cusgr 26232  df-vtxdg 26362  df-rgr 26453  df-rusgr 26454
This theorem is referenced by:  cusgrm1rusgr  26478
  Copyright terms: Public domain W3C validator