MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rgrusgrprc Structured version   Visualization version   Unicode version

Theorem rgrusgrprc 26485
Description: The class of 0-regular simple graphs is a proper class. (Contributed by AV, 27-Dec-2020.)
Assertion
Ref Expression
rgrusgrprc  |-  { g  e. USGraph  |  A. v  e.  (Vtx `  g )
( (VtxDeg `  g
) `  v )  =  0 }  e/  _V
Distinct variable group:    v, g

Proof of Theorem rgrusgrprc
Dummy variables  e  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elopab 4983 . . . . 5  |-  ( p  e.  { <. v ,  e >.  |  e : (/) --> (/) }  <->  E. v E. e ( p  = 
<. v ,  e >.  /\  e : (/) --> (/) ) )
2 f0bi 6088 . . . . . . . . . 10  |-  ( e : (/) --> (/)  <->  e  =  (/) )
3 opeq2 4403 . . . . . . . . . . . 12  |-  ( e  =  (/)  ->  <. v ,  e >.  =  <. v ,  (/) >. )
4 vex 3203 . . . . . . . . . . . . 13  |-  v  e. 
_V
5 usgr0eop 26138 . . . . . . . . . . . . 13  |-  ( v  e.  _V  ->  <. v ,  (/) >.  e. USGraph  )
64, 5ax-mp 5 . . . . . . . . . . . 12  |-  <. v ,  (/) >.  e. USGraph
73, 6syl6eqel 2709 . . . . . . . . . . 11  |-  ( e  =  (/)  ->  <. v ,  e >.  e. USGraph  )
8 vex 3203 . . . . . . . . . . . . 13  |-  e  e. 
_V
9 opiedgfv 25887 . . . . . . . . . . . . 13  |-  ( ( v  e.  _V  /\  e  e.  _V )  ->  (iEdg `  <. v ,  e >. )  =  e )
104, 8, 9mp2an 708 . . . . . . . . . . . 12  |-  (iEdg `  <. v ,  e >.
)  =  e
11 id 22 . . . . . . . . . . . 12  |-  ( e  =  (/)  ->  e  =  (/) )
1210, 11syl5eq 2668 . . . . . . . . . . 11  |-  ( e  =  (/)  ->  (iEdg `  <. v ,  e >.
)  =  (/) )
137, 12jca 554 . . . . . . . . . 10  |-  ( e  =  (/)  ->  ( <.
v ,  e >.  e. USGraph  /\  (iEdg `  <. v ,  e >. )  =  (/) ) )
142, 13sylbi 207 . . . . . . . . 9  |-  ( e : (/) --> (/)  ->  ( <. v ,  e >.  e. USGraph  /\  (iEdg ` 
<. v ,  e >.
)  =  (/) ) )
1514adantl 482 . . . . . . . 8  |-  ( ( p  =  <. v ,  e >.  /\  e : (/) --> (/) )  ->  ( <. v ,  e >.  e. USGraph  /\  (iEdg `  <. v ,  e >. )  =  (/) ) )
16 eleq1 2689 . . . . . . . . . 10  |-  ( p  =  <. v ,  e
>.  ->  ( p  e. USGraph  <->  <.
v ,  e >.  e. USGraph  ) )
17 fveq2 6191 . . . . . . . . . . 11  |-  ( p  =  <. v ,  e
>.  ->  (iEdg `  p
)  =  (iEdg `  <. v ,  e >.
) )
1817eqeq1d 2624 . . . . . . . . . 10  |-  ( p  =  <. v ,  e
>.  ->  ( (iEdg `  p )  =  (/)  <->  (iEdg ` 
<. v ,  e >.
)  =  (/) ) )
1916, 18anbi12d 747 . . . . . . . . 9  |-  ( p  =  <. v ,  e
>.  ->  ( ( p  e. USGraph  /\  (iEdg `  p
)  =  (/) )  <->  ( <. v ,  e >.  e. USGraph  /\  (iEdg ` 
<. v ,  e >.
)  =  (/) ) ) )
2019adantr 481 . . . . . . . 8  |-  ( ( p  =  <. v ,  e >.  /\  e : (/) --> (/) )  ->  (
( p  e. USGraph  /\  (iEdg `  p )  =  (/) ) 
<->  ( <. v ,  e
>.  e. USGraph  /\  (iEdg `  <. v ,  e >. )  =  (/) ) ) )
2115, 20mpbird 247 . . . . . . 7  |-  ( ( p  =  <. v ,  e >.  /\  e : (/) --> (/) )  ->  (
p  e. USGraph  /\  (iEdg `  p )  =  (/) ) )
22 fveq2 6191 . . . . . . . . 9  |-  ( g  =  p  ->  (iEdg `  g )  =  (iEdg `  p ) )
2322eqeq1d 2624 . . . . . . . 8  |-  ( g  =  p  ->  (
(iEdg `  g )  =  (/)  <->  (iEdg `  p )  =  (/) ) )
2423elrab 3363 . . . . . . 7  |-  ( p  e.  { g  e. USGraph  |  (iEdg `  g )  =  (/) }  <->  ( p  e. USGraph  /\  (iEdg `  p
)  =  (/) ) )
2521, 24sylibr 224 . . . . . 6  |-  ( ( p  =  <. v ,  e >.  /\  e : (/) --> (/) )  ->  p  e.  { g  e. USGraph  |  (iEdg `  g )  =  (/) } )
2625exlimivv 1860 . . . . 5  |-  ( E. v E. e ( p  =  <. v ,  e >.  /\  e : (/) --> (/) )  ->  p  e.  { g  e. USGraph  |  (iEdg `  g )  =  (/) } )
271, 26sylbi 207 . . . 4  |-  ( p  e.  { <. v ,  e >.  |  e : (/) --> (/) }  ->  p  e.  { g  e. USGraph  |  (iEdg `  g )  =  (/) } )
2827ssriv 3607 . . 3  |-  { <. v ,  e >.  |  e : (/) --> (/) }  C_  { g  e. USGraph  |  (iEdg `  g
)  =  (/) }
29 eqid 2622 . . . 4  |-  { <. v ,  e >.  |  e : (/) --> (/) }  =  { <. v ,  e >.  |  e : (/) --> (/) }
3029griedg0prc 26156 . . 3  |-  { <. v ,  e >.  |  e : (/) --> (/) }  e/  _V
31 prcssprc 4806 . . 3  |-  ( ( { <. v ,  e
>.  |  e : (/) --> (/)
}  C_  { g  e. USGraph  |  (iEdg `  g
)  =  (/) }  /\  {
<. v ,  e >.  |  e : (/) --> (/) }  e/  _V )  ->  { g  e. USGraph  |  (iEdg `  g )  =  (/) }  e/  _V )
3228, 30, 31mp2an 708 . 2  |-  { g  e. USGraph  |  (iEdg `  g
)  =  (/) }  e/  _V
33 df-3an 1039 . . . . . . . 8  |-  ( ( g  e. USGraph  /\  0  e. NN0*  /\  A. v  e.  (Vtx `  g )
( (VtxDeg `  g
) `  v )  =  0 )  <->  ( (
g  e. USGraph  /\  0  e. NN0*
)  /\  A. v  e.  (Vtx `  g )
( (VtxDeg `  g
) `  v )  =  0 ) )
3433bicomi 214 . . . . . . 7  |-  ( ( ( g  e. USGraph  /\  0  e. NN0* )  /\  A. v  e.  (Vtx `  g )
( (VtxDeg `  g
) `  v )  =  0 )  <->  ( g  e. USGraph  /\  0  e. NN0*  /\  A. v  e.  (Vtx `  g ) ( (VtxDeg `  g ) `  v
)  =  0 ) )
3534a1i 11 . . . . . 6  |-  ( g  e. USGraph  ->  ( ( ( g  e. USGraph  /\  0  e. NN0* )  /\  A. v  e.  (Vtx `  g )
( (VtxDeg `  g
) `  v )  =  0 )  <->  ( g  e. USGraph  /\  0  e. NN0*  /\  A. v  e.  (Vtx `  g ) ( (VtxDeg `  g ) `  v
)  =  0 ) ) )
36 0xnn0 11369 . . . . . . 7  |-  0  e. NN0*
37 ibar 525 . . . . . . 7  |-  ( ( g  e. USGraph  /\  0  e. NN0* )  ->  ( A. v  e.  (Vtx `  g
) ( (VtxDeg `  g ) `  v
)  =  0  <->  (
( g  e. USGraph  /\  0  e. NN0* )  /\  A. v  e.  (Vtx `  g )
( (VtxDeg `  g
) `  v )  =  0 ) ) )
3836, 37mpan2 707 . . . . . 6  |-  ( g  e. USGraph  ->  ( A. v  e.  (Vtx `  g )
( (VtxDeg `  g
) `  v )  =  0  <->  ( (
g  e. USGraph  /\  0  e. NN0*
)  /\  A. v  e.  (Vtx `  g )
( (VtxDeg `  g
) `  v )  =  0 ) ) )
39 eqid 2622 . . . . . . . 8  |-  (Vtx `  g )  =  (Vtx
`  g )
40 eqid 2622 . . . . . . . 8  |-  (VtxDeg `  g )  =  (VtxDeg `  g )
4139, 40isrusgr0 26462 . . . . . . 7  |-  ( ( g  e. USGraph  /\  0  e. NN0* )  ->  ( g RegUSGraph  0  <-> 
( g  e. USGraph  /\  0  e. NN0*  /\  A. v  e.  (Vtx `  g )
( (VtxDeg `  g
) `  v )  =  0 ) ) )
4236, 41mpan2 707 . . . . . 6  |-  ( g  e. USGraph  ->  ( g RegUSGraph  0  <->  ( g  e. USGraph  /\  0  e. NN0*  /\  A. v  e.  (Vtx `  g )
( (VtxDeg `  g
) `  v )  =  0 ) ) )
4335, 38, 423bitr4d 300 . . . . 5  |-  ( g  e. USGraph  ->  ( A. v  e.  (Vtx `  g )
( (VtxDeg `  g
) `  v )  =  0  <->  g RegUSGraph  0 ) )
4443rabbiia 3185 . . . 4  |-  { g  e. USGraph  |  A. v  e.  (Vtx `  g )
( (VtxDeg `  g
) `  v )  =  0 }  =  { g  e. USGraph  |  g RegUSGraph  0 }
45 usgr0edg0rusgr 26471 . . . . . 6  |-  ( g  e. USGraph  ->  ( g RegUSGraph  0  <->  (Edg
`  g )  =  (/) ) )
46 usgruhgr 26078 . . . . . . 7  |-  ( g  e. USGraph  ->  g  e. UHGraph  )
47 uhgriedg0edg0 26022 . . . . . . 7  |-  ( g  e. UHGraph  ->  ( (Edg `  g )  =  (/)  <->  (iEdg `  g )  =  (/) ) )
4846, 47syl 17 . . . . . 6  |-  ( g  e. USGraph  ->  ( (Edg `  g )  =  (/)  <->  (iEdg `  g )  =  (/) ) )
4945, 48bitrd 268 . . . . 5  |-  ( g  e. USGraph  ->  ( g RegUSGraph  0  <->  (iEdg `  g )  =  (/) ) )
5049rabbiia 3185 . . . 4  |-  { g  e. USGraph  |  g RegUSGraph  0 }  =  { g  e. USGraph  |  (iEdg `  g )  =  (/) }
5144, 50eqtri 2644 . . 3  |-  { g  e. USGraph  |  A. v  e.  (Vtx `  g )
( (VtxDeg `  g
) `  v )  =  0 }  =  { g  e. USGraph  |  (iEdg `  g )  =  (/) }
52 neleq1 2902 . . 3  |-  ( { g  e. USGraph  |  A. v  e.  (Vtx `  g
) ( (VtxDeg `  g ) `  v
)  =  0 }  =  { g  e. USGraph  |  (iEdg `  g )  =  (/) }  ->  ( { g  e. USGraph  |  A. v  e.  (Vtx `  g
) ( (VtxDeg `  g ) `  v
)  =  0 }  e/  _V  <->  { g  e. USGraph  |  (iEdg `  g
)  =  (/) }  e/  _V ) )
5351, 52ax-mp 5 . 2  |-  ( { g  e. USGraph  |  A. v  e.  (Vtx `  g
) ( (VtxDeg `  g ) `  v
)  =  0 }  e/  _V  <->  { g  e. USGraph  |  (iEdg `  g
)  =  (/) }  e/  _V )
5432, 53mpbir 221 1  |-  { g  e. USGraph  |  A. v  e.  (Vtx `  g )
( (VtxDeg `  g
) `  v )  =  0 }  e/  _V
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990    e/ wnel 2897   A.wral 2912   {crab 2916   _Vcvv 3200    C_ wss 3574   (/)c0 3915   <.cop 4183   class class class wbr 4653   {copab 4712   -->wf 5884   ` cfv 5888   0cc0 9936  NN0*cxnn0 11363  Vtxcvtx 25874  iEdgciedg 25875  Edgcedg 25939   UHGraph cuhgr 25951   USGraph cusgr 26044  VtxDegcvtxdg 26361   RegUSGraph crusgr 26452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-xadd 11947  df-fz 12327  df-hash 13118  df-iedg 25877  df-edg 25940  df-uhgr 25953  df-upgr 25977  df-uspgr 26045  df-usgr 26046  df-vtxdg 26362  df-rgr 26453  df-rusgr 26454
This theorem is referenced by:  rusgrprc  26486
  Copyright terms: Public domain W3C validator