| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tendococl | Structured version Visualization version Unicode version | ||
| Description: The composition of two trace-preserving endomorphisms (multiplication in the endormorphism ring) is a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013.) |
| Ref | Expression |
|---|---|
| tendoco.h |
|
| tendoco.e |
|
| Ref | Expression |
|---|---|
| tendococl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2622 |
. 2
| |
| 2 | tendoco.h |
. 2
| |
| 3 | eqid 2622 |
. 2
| |
| 4 | eqid 2622 |
. 2
| |
| 5 | tendoco.e |
. 2
| |
| 6 | simp1 1061 |
. 2
| |
| 7 | simp2 1062 |
. . . 4
| |
| 8 | 2, 3, 5 | tendof 36051 |
. . . 4
|
| 9 | 6, 7, 8 | syl2anc 693 |
. . 3
|
| 10 | simp3 1063 |
. . . 4
| |
| 11 | 2, 3, 5 | tendof 36051 |
. . . 4
|
| 12 | 6, 10, 11 | syl2anc 693 |
. . 3
|
| 13 | fco 6058 |
. . 3
| |
| 14 | 9, 12, 13 | syl2anc 693 |
. 2
|
| 15 | simp11l 1172 |
. . . . . 6
| |
| 16 | simp11r 1173 |
. . . . . 6
| |
| 17 | simp13 1093 |
. . . . . 6
| |
| 18 | simp2 1062 |
. . . . . 6
| |
| 19 | simp3 1063 |
. . . . . 6
| |
| 20 | 2, 3, 5 | tendovalco 36053 |
. . . . . 6
|
| 21 | 15, 16, 17, 18, 19, 20 | syl32anc 1334 |
. . . . 5
|
| 22 | 21 | fveq2d 6195 |
. . . 4
|
| 23 | simp12 1092 |
. . . . 5
| |
| 24 | simp11 1091 |
. . . . . 6
| |
| 25 | 2, 3, 5 | tendocl 36055 |
. . . . . 6
|
| 26 | 24, 17, 18, 25 | syl3anc 1326 |
. . . . 5
|
| 27 | 2, 3, 5 | tendocl 36055 |
. . . . . 6
|
| 28 | 24, 17, 19, 27 | syl3anc 1326 |
. . . . 5
|
| 29 | 2, 3, 5 | tendovalco 36053 |
. . . . 5
|
| 30 | 15, 16, 23, 26, 28, 29 | syl32anc 1334 |
. . . 4
|
| 31 | 22, 30 | eqtrd 2656 |
. . 3
|
| 32 | 2, 3 | ltrnco 36007 |
. . . . 5
|
| 33 | 24, 18, 19, 32 | syl3anc 1326 |
. . . 4
|
| 34 | 2, 3, 5 | tendocoval 36054 |
. . . 4
|
| 35 | 24, 23, 17, 33, 34 | syl121anc 1331 |
. . 3
|
| 36 | 2, 3, 5 | tendocoval 36054 |
. . . . 5
|
| 37 | 15, 16, 23, 17, 18, 36 | syl221anc 1337 |
. . . 4
|
| 38 | 2, 3, 5 | tendocoval 36054 |
. . . . 5
|
| 39 | 15, 16, 23, 17, 19, 38 | syl221anc 1337 |
. . . 4
|
| 40 | 37, 39 | coeq12d 5286 |
. . 3
|
| 41 | 31, 35, 40 | 3eqtr4d 2666 |
. 2
|
| 42 | eqid 2622 |
. . 3
| |
| 43 | simpl1l 1112 |
. . . 4
| |
| 44 | hllat 34650 |
. . . 4
| |
| 45 | 43, 44 | syl 17 |
. . 3
|
| 46 | simpl1 1064 |
. . . 4
| |
| 47 | simpl2 1065 |
. . . . . 6
| |
| 48 | simpl3 1066 |
. . . . . 6
| |
| 49 | simpr 477 |
. . . . . 6
| |
| 50 | 46, 47, 48, 49, 36 | syl121anc 1331 |
. . . . 5
|
| 51 | 46, 48, 49, 25 | syl3anc 1326 |
. . . . . 6
|
| 52 | 2, 3, 5 | tendocl 36055 |
. . . . . 6
|
| 53 | 46, 47, 51, 52 | syl3anc 1326 |
. . . . 5
|
| 54 | 50, 53 | eqeltrd 2701 |
. . . 4
|
| 55 | 42, 2, 3, 4 | trlcl 35451 |
. . . 4
|
| 56 | 46, 54, 55 | syl2anc 693 |
. . 3
|
| 57 | 42, 2, 3, 4 | trlcl 35451 |
. . . 4
|
| 58 | 46, 51, 57 | syl2anc 693 |
. . 3
|
| 59 | 42, 2, 3, 4 | trlcl 35451 |
. . . 4
|
| 60 | 46, 49, 59 | syl2anc 693 |
. . 3
|
| 61 | simpl1r 1113 |
. . . . . 6
| |
| 62 | 43, 61, 47, 48, 49, 36 | syl221anc 1337 |
. . . . 5
|
| 63 | 62 | fveq2d 6195 |
. . . 4
|
| 64 | 1, 2, 3, 4, 5 | tendotp 36049 |
. . . . 5
|
| 65 | 46, 47, 51, 64 | syl3anc 1326 |
. . . 4
|
| 66 | 63, 65 | eqbrtrd 4675 |
. . 3
|
| 67 | 1, 2, 3, 4, 5 | tendotp 36049 |
. . . 4
|
| 68 | 46, 48, 49, 67 | syl3anc 1326 |
. . 3
|
| 69 | 42, 1, 45, 56, 58, 60, 66, 68 | lattrd 17058 |
. 2
|
| 70 | 1, 2, 3, 4, 5, 6, 14, 41, 69 | istendod 36050 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-riotaBAD 34239 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-undef 7399 df-map 7859 df-preset 16928 df-poset 16946 df-plt 16958 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-p0 17039 df-p1 17040 df-lat 17046 df-clat 17108 df-oposet 34463 df-ol 34465 df-oml 34466 df-covers 34553 df-ats 34554 df-atl 34585 df-cvlat 34609 df-hlat 34638 df-llines 34784 df-lplanes 34785 df-lvols 34786 df-lines 34787 df-psubsp 34789 df-pmap 34790 df-padd 35082 df-lhyp 35274 df-laut 35275 df-ldil 35390 df-ltrn 35391 df-trl 35446 df-tendo 36043 |
| This theorem is referenced by: tendodi1 36072 tendodi2 36073 tendo0mul 36114 tendo0mulr 36115 tendoconid 36117 cdleml3N 36266 cdleml8 36271 erngdvlem3 36278 erngdvlem3-rN 36286 dvalveclem 36314 dvhvscacl 36392 dvhlveclem 36397 diblss 36459 dicvscacl 36480 dih1dimatlem0 36617 |
| Copyright terms: Public domain | W3C validator |