MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istgp Structured version   Visualization version   Unicode version

Theorem istgp 21881
Description: The predicate "is a topological group". Definition of [BourbakiTop1] p. III.1. (Contributed by FL, 18-Apr-2010.) (Revised by Mario Carneiro, 13-Aug-2015.)
Hypotheses
Ref Expression
istgp.1  |-  J  =  ( TopOpen `  G )
istgp.2  |-  I  =  ( invg `  G )
Assertion
Ref Expression
istgp  |-  ( G  e.  TopGrp 
<->  ( G  e.  Grp  /\  G  e. TopMnd  /\  I  e.  ( J  Cn  J
) ) )

Proof of Theorem istgp
Dummy variables  f 
j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elin 3796 . . 3  |-  ( G  e.  ( Grp  i^i TopMnd )  <-> 
( G  e.  Grp  /\  G  e. TopMnd ) )
21anbi1i 731 . 2  |-  ( ( G  e.  ( Grp 
i^i TopMnd )  /\  I  e.  ( J  Cn  J
) )  <->  ( ( G  e.  Grp  /\  G  e. TopMnd )  /\  I  e.  ( J  Cn  J
) ) )
3 fvexd 6203 . . . 4  |-  ( f  =  G  ->  ( TopOpen
`  f )  e. 
_V )
4 simpl 473 . . . . . . 7  |-  ( ( f  =  G  /\  j  =  ( TopOpen `  f ) )  -> 
f  =  G )
54fveq2d 6195 . . . . . 6  |-  ( ( f  =  G  /\  j  =  ( TopOpen `  f ) )  -> 
( invg `  f )  =  ( invg `  G
) )
6 istgp.2 . . . . . 6  |-  I  =  ( invg `  G )
75, 6syl6eqr 2674 . . . . 5  |-  ( ( f  =  G  /\  j  =  ( TopOpen `  f ) )  -> 
( invg `  f )  =  I )
8 id 22 . . . . . . 7  |-  ( j  =  ( TopOpen `  f
)  ->  j  =  ( TopOpen `  f )
)
9 fveq2 6191 . . . . . . . 8  |-  ( f  =  G  ->  ( TopOpen
`  f )  =  ( TopOpen `  G )
)
10 istgp.1 . . . . . . . 8  |-  J  =  ( TopOpen `  G )
119, 10syl6eqr 2674 . . . . . . 7  |-  ( f  =  G  ->  ( TopOpen
`  f )  =  J )
128, 11sylan9eqr 2678 . . . . . 6  |-  ( ( f  =  G  /\  j  =  ( TopOpen `  f ) )  -> 
j  =  J )
1312, 12oveq12d 6668 . . . . 5  |-  ( ( f  =  G  /\  j  =  ( TopOpen `  f ) )  -> 
( j  Cn  j
)  =  ( J  Cn  J ) )
147, 13eleq12d 2695 . . . 4  |-  ( ( f  =  G  /\  j  =  ( TopOpen `  f ) )  -> 
( ( invg `  f )  e.  ( j  Cn  j )  <-> 
I  e.  ( J  Cn  J ) ) )
153, 14sbcied 3472 . . 3  |-  ( f  =  G  ->  ( [. ( TopOpen `  f )  /  j ]. ( invg `  f )  e.  ( j  Cn  j )  <->  I  e.  ( J  Cn  J
) ) )
16 df-tgp 21877 . . 3  |-  TopGrp  =  {
f  e.  ( Grp 
i^i TopMnd )  |  [. ( TopOpen
`  f )  / 
j ]. ( invg `  f )  e.  ( j  Cn  j ) }
1715, 16elrab2 3366 . 2  |-  ( G  e.  TopGrp 
<->  ( G  e.  ( Grp  i^i TopMnd )  /\  I  e.  ( J  Cn  J
) ) )
18 df-3an 1039 . 2  |-  ( ( G  e.  Grp  /\  G  e. TopMnd  /\  I  e.  ( J  Cn  J
) )  <->  ( ( G  e.  Grp  /\  G  e. TopMnd )  /\  I  e.  ( J  Cn  J
) ) )
192, 17, 183bitr4i 292 1  |-  ( G  e.  TopGrp 
<->  ( G  e.  Grp  /\  G  e. TopMnd  /\  I  e.  ( J  Cn  J
) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200   [.wsbc 3435    i^i cin 3573   ` cfv 5888  (class class class)co 6650   TopOpenctopn 16082   Grpcgrp 17422   invgcminusg 17423    Cn ccn 21028  TopMndctmd 21874   TopGrpctgp 21875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653  df-tgp 21877
This theorem is referenced by:  tgpgrp  21882  tgptmd  21883  tgpinv  21889  istgp2  21895  oppgtgp  21902  symgtgp  21905  subgtgp  21909  prdstgpd  21928  tlmtgp  21999  nrgtdrg  22497
  Copyright terms: Public domain W3C validator