| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prdstgpd | Structured version Visualization version Unicode version | ||
| Description: The product of a family of topological groups is a topological group. (Contributed by Mario Carneiro, 22-Sep-2015.) |
| Ref | Expression |
|---|---|
| prdstgpd.y |
|
| prdstgpd.i |
|
| prdstgpd.s |
|
| prdstgpd.r |
|
| Ref | Expression |
|---|---|
| prdstgpd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdstgpd.y |
. . 3
| |
| 2 | prdstgpd.i |
. . 3
| |
| 3 | prdstgpd.s |
. . 3
| |
| 4 | prdstgpd.r |
. . . 4
| |
| 5 | tgpgrp 21882 |
. . . . 5
| |
| 6 | 5 | ssriv 3607 |
. . . 4
|
| 7 | fss 6056 |
. . . 4
| |
| 8 | 4, 6, 7 | sylancl 694 |
. . 3
|
| 9 | 1, 2, 3, 8 | prdsgrpd 17525 |
. 2
|
| 10 | tgptmd 21883 |
. . . . 5
| |
| 11 | 10 | ssriv 3607 |
. . . 4
|
| 12 | fss 6056 |
. . . 4
| |
| 13 | 4, 11, 12 | sylancl 694 |
. . 3
|
| 14 | 1, 2, 3, 13 | prdstmdd 21927 |
. 2
|
| 15 | eqid 2622 |
. . . . . . . 8
| |
| 16 | eqid 2622 |
. . . . . . . 8
| |
| 17 | 15, 16 | grpinvf 17466 |
. . . . . . 7
|
| 18 | 9, 17 | syl 17 |
. . . . . 6
|
| 19 | 18 | feqmptd 6249 |
. . . . 5
|
| 20 | 2 | adantr 481 |
. . . . . . 7
|
| 21 | 3 | adantr 481 |
. . . . . . 7
|
| 22 | 8 | adantr 481 |
. . . . . . 7
|
| 23 | simpr 477 |
. . . . . . 7
| |
| 24 | 1, 20, 21, 22, 15, 16, 23 | prdsinvgd 17526 |
. . . . . 6
|
| 25 | 24 | mpteq2dva 4744 |
. . . . 5
|
| 26 | 19, 25 | eqtrd 2656 |
. . . 4
|
| 27 | eqid 2622 |
. . . . 5
| |
| 28 | eqid 2622 |
. . . . . . 7
| |
| 29 | 28, 15 | tmdtopon 21885 |
. . . . . 6
|
| 30 | 14, 29 | syl 17 |
. . . . 5
|
| 31 | topnfn 16086 |
. . . . . . 7
| |
| 32 | ffn 6045 |
. . . . . . . . 9
| |
| 33 | 4, 32 | syl 17 |
. . . . . . . 8
|
| 34 | dffn2 6047 |
. . . . . . . 8
| |
| 35 | 33, 34 | sylib 208 |
. . . . . . 7
|
| 36 | fnfco 6069 |
. . . . . . 7
| |
| 37 | 31, 35, 36 | sylancr 695 |
. . . . . 6
|
| 38 | fvco3 6275 |
. . . . . . . . 9
| |
| 39 | 4, 38 | sylan 488 |
. . . . . . . 8
|
| 40 | 4 | ffvelrnda 6359 |
. . . . . . . . 9
|
| 41 | eqid 2622 |
. . . . . . . . . 10
| |
| 42 | eqid 2622 |
. . . . . . . . . 10
| |
| 43 | 41, 42 | tgptopon 21886 |
. . . . . . . . 9
|
| 44 | topontop 20718 |
. . . . . . . . 9
| |
| 45 | 40, 43, 44 | 3syl 18 |
. . . . . . . 8
|
| 46 | 39, 45 | eqeltrd 2701 |
. . . . . . 7
|
| 47 | 46 | ralrimiva 2966 |
. . . . . 6
|
| 48 | ffnfv 6388 |
. . . . . 6
| |
| 49 | 37, 47, 48 | sylanbrc 698 |
. . . . 5
|
| 50 | 30 | adantr 481 |
. . . . . . 7
|
| 51 | 1, 3, 2, 33, 28 | prdstopn 21431 |
. . . . . . . . . . . . 13
|
| 52 | 51 | adantr 481 |
. . . . . . . . . . . 12
|
| 53 | 52 | eqcomd 2628 |
. . . . . . . . . . 11
|
| 54 | 53, 50 | eqeltrd 2701 |
. . . . . . . . . 10
|
| 55 | toponuni 20719 |
. . . . . . . . . 10
| |
| 56 | mpteq1 4737 |
. . . . . . . . . 10
| |
| 57 | 54, 55, 56 | 3syl 18 |
. . . . . . . . 9
|
| 58 | 2 | adantr 481 |
. . . . . . . . . 10
|
| 59 | 49 | adantr 481 |
. . . . . . . . . 10
|
| 60 | simpr 477 |
. . . . . . . . . 10
| |
| 61 | eqid 2622 |
. . . . . . . . . . 11
| |
| 62 | 61, 27 | ptpjcn 21414 |
. . . . . . . . . 10
|
| 63 | 58, 59, 60, 62 | syl3anc 1326 |
. . . . . . . . 9
|
| 64 | 57, 63 | eqeltrd 2701 |
. . . . . . . 8
|
| 65 | 53, 39 | oveq12d 6668 |
. . . . . . . 8
|
| 66 | 64, 65 | eleqtrd 2703 |
. . . . . . 7
|
| 67 | eqid 2622 |
. . . . . . . . 9
| |
| 68 | 41, 67 | tgpinv 21889 |
. . . . . . . 8
|
| 69 | 40, 68 | syl 17 |
. . . . . . 7
|
| 70 | 50, 66, 69 | cnmpt11f 21467 |
. . . . . 6
|
| 71 | 39 | oveq2d 6666 |
. . . . . 6
|
| 72 | 70, 71 | eleqtrrd 2704 |
. . . . 5
|
| 73 | 27, 30, 2, 49, 72 | ptcn 21430 |
. . . 4
|
| 74 | 26, 73 | eqeltrd 2701 |
. . 3
|
| 75 | 51 | oveq2d 6666 |
. . 3
|
| 76 | 74, 75 | eleqtrrd 2704 |
. 2
|
| 77 | 28, 16 | istgp 21881 |
. 2
|
| 78 | 9, 14, 76, 77 | syl3anbrc 1246 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-ixp 7909 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-fi 8317 df-sup 8348 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-dec 11494 df-uz 11688 df-fz 12327 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-plusg 15954 df-mulr 15955 df-sca 15957 df-vsca 15958 df-ip 15959 df-tset 15960 df-ple 15961 df-ds 15964 df-hom 15966 df-cco 15967 df-rest 16083 df-topn 16084 df-0g 16102 df-topgen 16104 df-pt 16105 df-prds 16108 df-plusf 17241 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-grp 17425 df-minusg 17426 df-top 20699 df-topon 20716 df-topsp 20737 df-bases 20750 df-cn 21031 df-cnp 21032 df-tx 21365 df-tmd 21876 df-tgp 21877 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |