MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgtgp Structured version   Visualization version   Unicode version

Theorem subgtgp 21909
Description: A subgroup of a topological group is a topological group. (Contributed by Mario Carneiro, 17-Sep-2015.)
Hypothesis
Ref Expression
subgtgp.h  |-  H  =  ( Gs  S )
Assertion
Ref Expression
subgtgp  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )
)  ->  H  e.  TopGrp )

Proof of Theorem subgtgp
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 subgtgp.h . . . 4  |-  H  =  ( Gs  S )
21subggrp 17597 . . 3  |-  ( S  e.  (SubGrp `  G
)  ->  H  e.  Grp )
32adantl 482 . 2  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )
)  ->  H  e.  Grp )
4 tgptmd 21883 . . 3  |-  ( G  e.  TopGrp  ->  G  e. TopMnd )
5 subgsubm 17616 . . 3  |-  ( S  e.  (SubGrp `  G
)  ->  S  e.  (SubMnd `  G ) )
61submtmd 21908 . . 3  |-  ( ( G  e. TopMnd  /\  S  e.  (SubMnd `  G )
)  ->  H  e. TopMnd )
74, 5, 6syl2an 494 . 2  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )
)  ->  H  e. TopMnd )
81subgbas 17598 . . . . . . 7  |-  ( S  e.  (SubGrp `  G
)  ->  S  =  ( Base `  H )
)
98adantl 482 . . . . . 6  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )
)  ->  S  =  ( Base `  H )
)
109mpteq1d 4738 . . . . 5  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )
)  ->  ( x  e.  S  |->  ( ( invg `  H
) `  x )
)  =  ( x  e.  ( Base `  H
)  |->  ( ( invg `  H ) `
 x ) ) )
11 eqid 2622 . . . . . . . 8  |-  ( invg `  G )  =  ( invg `  G )
12 eqid 2622 . . . . . . . 8  |-  ( invg `  H )  =  ( invg `  H )
131, 11, 12subginv 17601 . . . . . . 7  |-  ( ( S  e.  (SubGrp `  G )  /\  x  e.  S )  ->  (
( invg `  G ) `  x
)  =  ( ( invg `  H
) `  x )
)
1413adantll 750 . . . . . 6  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  S )  ->  ( ( invg `  G ) `  x
)  =  ( ( invg `  H
) `  x )
)
1514mpteq2dva 4744 . . . . 5  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )
)  ->  ( x  e.  S  |->  ( ( invg `  G
) `  x )
)  =  ( x  e.  S  |->  ( ( invg `  H
) `  x )
) )
16 eqid 2622 . . . . . . . 8  |-  ( Base `  H )  =  (
Base `  H )
1716, 12grpinvf 17466 . . . . . . 7  |-  ( H  e.  Grp  ->  ( invg `  H ) : ( Base `  H
) --> ( Base `  H
) )
183, 17syl 17 . . . . . 6  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )
)  ->  ( invg `  H ) : ( Base `  H
) --> ( Base `  H
) )
1918feqmptd 6249 . . . . 5  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )
)  ->  ( invg `  H )  =  ( x  e.  ( Base `  H
)  |->  ( ( invg `  H ) `
 x ) ) )
2010, 15, 193eqtr4rd 2667 . . . 4  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )
)  ->  ( invg `  H )  =  ( x  e.  S  |->  ( ( invg `  G ) `
 x ) ) )
21 eqid 2622 . . . . 5  |-  ( (
TopOpen `  G )t  S )  =  ( ( TopOpen `  G )t  S )
22 eqid 2622 . . . . . . 7  |-  ( TopOpen `  G )  =  (
TopOpen `  G )
23 eqid 2622 . . . . . . 7  |-  ( Base `  G )  =  (
Base `  G )
2422, 23tgptopon 21886 . . . . . 6  |-  ( G  e.  TopGrp  ->  ( TopOpen `  G
)  e.  (TopOn `  ( Base `  G )
) )
2524adantr 481 . . . . 5  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )
)  ->  ( TopOpen `  G )  e.  (TopOn `  ( Base `  G
) ) )
2623subgss 17595 . . . . . 6  |-  ( S  e.  (SubGrp `  G
)  ->  S  C_  ( Base `  G ) )
2726adantl 482 . . . . 5  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )
)  ->  S  C_  ( Base `  G ) )
28 tgpgrp 21882 . . . . . . . . 9  |-  ( G  e.  TopGrp  ->  G  e.  Grp )
2928adantr 481 . . . . . . . 8  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )
)  ->  G  e.  Grp )
3023, 11grpinvf 17466 . . . . . . . 8  |-  ( G  e.  Grp  ->  ( invg `  G ) : ( Base `  G
) --> ( Base `  G
) )
3129, 30syl 17 . . . . . . 7  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )
)  ->  ( invg `  G ) : ( Base `  G
) --> ( Base `  G
) )
3231feqmptd 6249 . . . . . 6  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )
)  ->  ( invg `  G )  =  ( x  e.  ( Base `  G
)  |->  ( ( invg `  G ) `
 x ) ) )
3322, 11tgpinv 21889 . . . . . . 7  |-  ( G  e.  TopGrp  ->  ( invg `  G )  e.  ( ( TopOpen `  G )  Cn  ( TopOpen `  G )
) )
3433adantr 481 . . . . . 6  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )
)  ->  ( invg `  G )  e.  ( ( TopOpen `  G
)  Cn  ( TopOpen `  G ) ) )
3532, 34eqeltrrd 2702 . . . . 5  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )
)  ->  ( x  e.  ( Base `  G
)  |->  ( ( invg `  G ) `
 x ) )  e.  ( ( TopOpen `  G )  Cn  ( TopOpen
`  G ) ) )
3621, 25, 27, 35cnmpt1res 21479 . . . 4  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )
)  ->  ( x  e.  S  |->  ( ( invg `  G
) `  x )
)  e.  ( ( ( TopOpen `  G )t  S
)  Cn  ( TopOpen `  G ) ) )
3720, 36eqeltrd 2701 . . 3  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )
)  ->  ( invg `  H )  e.  ( ( ( TopOpen `  G )t  S )  Cn  ( TopOpen
`  G ) ) )
38 frn 6053 . . . . . 6  |-  ( ( invg `  H
) : ( Base `  H ) --> ( Base `  H )  ->  ran  ( invg `  H
)  C_  ( Base `  H ) )
3918, 38syl 17 . . . . 5  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )
)  ->  ran  ( invg `  H ) 
C_  ( Base `  H
) )
4039, 9sseqtr4d 3642 . . . 4  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )
)  ->  ran  ( invg `  H ) 
C_  S )
41 cnrest2 21090 . . . 4  |-  ( ( ( TopOpen `  G )  e.  (TopOn `  ( Base `  G ) )  /\  ran  ( invg `  H )  C_  S  /\  S  C_  ( Base `  G ) )  -> 
( ( invg `  H )  e.  ( ( ( TopOpen `  G
)t 
S )  Cn  ( TopOpen
`  G ) )  <-> 
( invg `  H )  e.  ( ( ( TopOpen `  G
)t 
S )  Cn  (
( TopOpen `  G )t  S
) ) ) )
4225, 40, 27, 41syl3anc 1326 . . 3  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )
)  ->  ( ( invg `  H )  e.  ( ( (
TopOpen `  G )t  S )  Cn  ( TopOpen `  G
) )  <->  ( invg `  H )  e.  ( ( ( TopOpen `  G )t  S )  Cn  (
( TopOpen `  G )t  S
) ) ) )
4337, 42mpbid 222 . 2  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )
)  ->  ( invg `  H )  e.  ( ( ( TopOpen `  G )t  S )  Cn  (
( TopOpen `  G )t  S
) ) )
441, 22resstopn 20990 . . 3  |-  ( (
TopOpen `  G )t  S )  =  ( TopOpen `  H
)
4544, 12istgp 21881 . 2  |-  ( H  e.  TopGrp 
<->  ( H  e.  Grp  /\  H  e. TopMnd  /\  ( invg `  H )  e.  ( ( (
TopOpen `  G )t  S )  Cn  ( ( TopOpen `  G )t  S ) ) ) )
463, 7, 43, 45syl3anbrc 1246 1  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )
)  ->  H  e.  TopGrp )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    C_ wss 3574    |-> cmpt 4729   ran crn 5115   -->wf 5884   ` cfv 5888  (class class class)co 6650   Basecbs 15857   ↾s cress 15858   ↾t crest 16081   TopOpenctopn 16082  SubMndcsubmnd 17334   Grpcgrp 17422   invgcminusg 17423  SubGrpcsubg 17588  TopOnctopon 20715    Cn ccn 21028  TopMndctmd 21874   TopGrpctgp 21875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-tset 15960  df-rest 16083  df-topn 16084  df-0g 16102  df-topgen 16104  df-plusf 17241  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-subg 17591  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cn 21031  df-tx 21365  df-tmd 21876  df-tgp 21877
This theorem is referenced by:  qqhcn  30035
  Copyright terms: Public domain W3C validator