| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > istgp2 | Structured version Visualization version Unicode version | ||
| Description: A group with a topology is a topological group iff the subtraction operation is continuous. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| Ref | Expression |
|---|---|
| tgpsubcn.2 |
|
| tgpsubcn.3 |
|
| Ref | Expression |
|---|---|
| istgp2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgpgrp 21882 |
. . 3
| |
| 2 | tgptps 21884 |
. . 3
| |
| 3 | tgpsubcn.2 |
. . . 4
| |
| 4 | tgpsubcn.3 |
. . . 4
| |
| 5 | 3, 4 | tgpsubcn 21894 |
. . 3
|
| 6 | 1, 2, 5 | 3jca 1242 |
. 2
|
| 7 | simp1 1061 |
. . 3
| |
| 8 | grpmnd 17429 |
. . . . 5
| |
| 9 | 8 | 3ad2ant1 1082 |
. . . 4
|
| 10 | simp2 1062 |
. . . 4
| |
| 11 | eqid 2622 |
. . . . . . . 8
| |
| 12 | eqid 2622 |
. . . . . . . 8
| |
| 13 | eqid 2622 |
. . . . . . . 8
| |
| 14 | 7 | 3ad2ant1 1082 |
. . . . . . . 8
|
| 15 | simp2 1062 |
. . . . . . . 8
| |
| 16 | simp3 1063 |
. . . . . . . 8
| |
| 17 | 11, 12, 4, 13, 14, 15, 16 | grpsubinv 17488 |
. . . . . . 7
|
| 18 | 17 | mpt2eq3dva 6719 |
. . . . . 6
|
| 19 | eqid 2622 |
. . . . . . 7
| |
| 20 | 11, 12, 19 | plusffval 17247 |
. . . . . 6
|
| 21 | 18, 20 | syl6eqr 2674 |
. . . . 5
|
| 22 | 11, 3 | istps 20738 |
. . . . . . 7
|
| 23 | 10, 22 | sylib 208 |
. . . . . 6
|
| 24 | 23, 23 | cnmpt1st 21471 |
. . . . . 6
|
| 25 | 23, 23 | cnmpt2nd 21472 |
. . . . . . 7
|
| 26 | 11, 13 | grpinvf 17466 |
. . . . . . . . . . 11
|
| 27 | 26 | 3ad2ant1 1082 |
. . . . . . . . . 10
|
| 28 | 27 | feqmptd 6249 |
. . . . . . . . 9
|
| 29 | eqid 2622 |
. . . . . . . . . . . 12
| |
| 30 | 11, 4, 13, 29 | grpinvval2 17498 |
. . . . . . . . . . 11
|
| 31 | 7, 30 | sylan 488 |
. . . . . . . . . 10
|
| 32 | 31 | mpteq2dva 4744 |
. . . . . . . . 9
|
| 33 | 28, 32 | eqtrd 2656 |
. . . . . . . 8
|
| 34 | 11, 29 | grpidcl 17450 |
. . . . . . . . . . 11
|
| 35 | 34 | 3ad2ant1 1082 |
. . . . . . . . . 10
|
| 36 | 23, 23, 35 | cnmptc 21465 |
. . . . . . . . 9
|
| 37 | 23 | cnmptid 21464 |
. . . . . . . . 9
|
| 38 | simp3 1063 |
. . . . . . . . 9
| |
| 39 | 23, 36, 37, 38 | cnmpt12f 21469 |
. . . . . . . 8
|
| 40 | 33, 39 | eqeltrd 2701 |
. . . . . . 7
|
| 41 | 23, 23, 25, 40 | cnmpt21f 21475 |
. . . . . 6
|
| 42 | 23, 23, 24, 41, 38 | cnmpt22f 21478 |
. . . . 5
|
| 43 | 21, 42 | eqeltrrd 2702 |
. . . 4
|
| 44 | 19, 3 | istmd 21878 |
. . . 4
|
| 45 | 9, 10, 43, 44 | syl3anbrc 1246 |
. . 3
|
| 46 | 3, 13 | istgp 21881 |
. . 3
|
| 47 | 7, 45, 40, 46 | syl3anbrc 1246 |
. 2
|
| 48 | 6, 47 | impbii 199 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-map 7859 df-0g 16102 df-topgen 16104 df-plusf 17241 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-grp 17425 df-minusg 17426 df-sbg 17427 df-top 20699 df-topon 20716 df-topsp 20737 df-bases 20750 df-cn 21031 df-cnp 21032 df-tx 21365 df-tmd 21876 df-tgp 21877 |
| This theorem is referenced by: distgp 21903 indistgp 21904 qustgplem 21924 ngptgp 22440 cnfldtgp 22672 |
| Copyright terms: Public domain | W3C validator |