Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mhmhmeotmd Structured version   Visualization version   Unicode version

Theorem mhmhmeotmd 29973
Description: Deduce a Topological Monoid using mapping that is both a homeomorphism and a monoid homomorphism. (Contributed by Thierry Arnoux, 21-Jun-2017.)
Hypotheses
Ref Expression
mhmhmeotmd.m  |-  F  e.  ( S MndHom  T )
mhmhmeotmd.h  |-  F  e.  ( ( TopOpen `  S
) Homeo ( TopOpen `  T
) )
mhmhmeotmd.t  |-  S  e. TopMnd
mhmhmeotmd.s  |-  T  e. 
TopSp
Assertion
Ref Expression
mhmhmeotmd  |-  T  e. TopMnd

Proof of Theorem mhmhmeotmd
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhmhmeotmd.m . . 3  |-  F  e.  ( S MndHom  T )
2 mhmrcl2 17339 . . 3  |-  ( F  e.  ( S MndHom  T
)  ->  T  e.  Mnd )
31, 2ax-mp 5 . 2  |-  T  e. 
Mnd
4 mhmhmeotmd.s . 2  |-  T  e. 
TopSp
5 mhmhmeotmd.h . . 3  |-  F  e.  ( ( TopOpen `  S
) Homeo ( TopOpen `  T
) )
6 mhmrcl1 17338 . . . . 5  |-  ( F  e.  ( S MndHom  T
)  ->  S  e.  Mnd )
71, 6ax-mp 5 . . . 4  |-  S  e. 
Mnd
8 eqid 2622 . . . . 5  |-  ( Base `  S )  =  (
Base `  S )
9 eqid 2622 . . . . 5  |-  ( +f `  S )  =  ( +f `  S )
108, 9mndplusf 17309 . . . 4  |-  ( S  e.  Mnd  ->  ( +f `  S
) : ( (
Base `  S )  X.  ( Base `  S
) ) --> ( Base `  S ) )
117, 10ax-mp 5 . . 3  |-  ( +f `  S ) : ( ( Base `  S )  X.  ( Base `  S ) ) --> ( Base `  S
)
12 eqid 2622 . . . . 5  |-  ( Base `  T )  =  (
Base `  T )
13 eqid 2622 . . . . 5  |-  ( +f `  T )  =  ( +f `  T )
1412, 13mndplusf 17309 . . . 4  |-  ( T  e.  Mnd  ->  ( +f `  T
) : ( (
Base `  T )  X.  ( Base `  T
) ) --> ( Base `  T ) )
153, 14ax-mp 5 . . 3  |-  ( +f `  T ) : ( ( Base `  T )  X.  ( Base `  T ) ) --> ( Base `  T
)
16 mhmhmeotmd.t . . . 4  |-  S  e. TopMnd
17 eqid 2622 . . . . 5  |-  ( TopOpen `  S )  =  (
TopOpen `  S )
1817, 8tmdtopon 21885 . . . 4  |-  ( S  e. TopMnd  ->  ( TopOpen `  S
)  e.  (TopOn `  ( Base `  S )
) )
1916, 18ax-mp 5 . . 3  |-  ( TopOpen `  S )  e.  (TopOn `  ( Base `  S
) )
20 eqid 2622 . . . . 5  |-  ( TopOpen `  T )  =  (
TopOpen `  T )
2112, 20istps 20738 . . . 4  |-  ( T  e.  TopSp 
<->  ( TopOpen `  T )  e.  (TopOn `  ( Base `  T ) ) )
224, 21mpbi 220 . . 3  |-  ( TopOpen `  T )  e.  (TopOn `  ( Base `  T
) )
23 eqid 2622 . . . . . 6  |-  ( +g  `  S )  =  ( +g  `  S )
24 eqid 2622 . . . . . 6  |-  ( +g  `  T )  =  ( +g  `  T )
258, 23, 24mhmlin 17342 . . . . 5  |-  ( ( F  e.  ( S MndHom  T )  /\  x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )
)  ->  ( F `  ( x ( +g  `  S ) y ) )  =  ( ( F `  x ) ( +g  `  T
) ( F `  y ) ) )
261, 25mp3an1 1411 . . . 4  |-  ( ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S
) )  ->  ( F `  ( x
( +g  `  S ) y ) )  =  ( ( F `  x ) ( +g  `  T ) ( F `
 y ) ) )
278, 23, 9plusfval 17248 . . . . 5  |-  ( ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S
) )  ->  (
x ( +f `  S ) y )  =  ( x ( +g  `  S ) y ) )
2827fveq2d 6195 . . . 4  |-  ( ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S
) )  ->  ( F `  ( x
( +f `  S ) y ) )  =  ( F `
 ( x ( +g  `  S ) y ) ) )
298, 12mhmf 17340 . . . . . . 7  |-  ( F  e.  ( S MndHom  T
)  ->  F :
( Base `  S ) --> ( Base `  T )
)
301, 29ax-mp 5 . . . . . 6  |-  F :
( Base `  S ) --> ( Base `  T )
3130ffvelrni 6358 . . . . 5  |-  ( x  e.  ( Base `  S
)  ->  ( F `  x )  e.  (
Base `  T )
)
3230ffvelrni 6358 . . . . 5  |-  ( y  e.  ( Base `  S
)  ->  ( F `  y )  e.  (
Base `  T )
)
3312, 24, 13plusfval 17248 . . . . 5  |-  ( ( ( F `  x
)  e.  ( Base `  T )  /\  ( F `  y )  e.  ( Base `  T
) )  ->  (
( F `  x
) ( +f `  T ) ( F `
 y ) )  =  ( ( F `
 x ) ( +g  `  T ) ( F `  y
) ) )
3431, 32, 33syl2an 494 . . . 4  |-  ( ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S
) )  ->  (
( F `  x
) ( +f `  T ) ( F `
 y ) )  =  ( ( F `
 x ) ( +g  `  T ) ( F `  y
) ) )
3526, 28, 343eqtr4d 2666 . . 3  |-  ( ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S
) )  ->  ( F `  ( x
( +f `  S ) y ) )  =  ( ( F `  x ) ( +f `  T ) ( F `
 y ) ) )
3617, 9tmdcn 21887 . . . 4  |-  ( S  e. TopMnd  ->  ( +f `  S )  e.  ( ( ( TopOpen `  S
)  tX  ( TopOpen `  S ) )  Cn  ( TopOpen `  S )
) )
3716, 36ax-mp 5 . . 3  |-  ( +f `  S )  e.  ( ( (
TopOpen `  S )  tX  ( TopOpen `  S )
)  Cn  ( TopOpen `  S ) )
385, 11, 15, 19, 22, 35, 37mndpluscn 29972 . 2  |-  ( +f `  T )  e.  ( ( (
TopOpen `  T )  tX  ( TopOpen `  T )
)  Cn  ( TopOpen `  T ) )
3913, 20istmd 21878 . 2  |-  ( T  e. TopMnd 
<->  ( T  e.  Mnd  /\  T  e.  TopSp  /\  ( +f `  T
)  e.  ( ( ( TopOpen `  T )  tX  ( TopOpen `  T )
)  Cn  ( TopOpen `  T ) ) ) )
403, 4, 38, 39mpbir3an 1244 1  |-  T  e. TopMnd
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    = wceq 1483    e. wcel 1990    X. cxp 5112   -->wf 5884   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   TopOpenctopn 16082   +fcplusf 17239   Mndcmnd 17294   MndHom cmhm 17333  TopOnctopon 20715   TopSpctps 20736    Cn ccn 21028    tX ctx 21363   Homeochmeo 21556  TopMndctmd 21874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-topgen 16104  df-plusf 17241  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cn 21031  df-tx 21365  df-hmeo 21558  df-tmd 21876
This theorem is referenced by:  xrge0tmd  29992
  Copyright terms: Public domain W3C validator