| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > istrkgld | Structured version Visualization version Unicode version | ||
| Description: Property of fulfilling
the lower dimension |
| Ref | Expression |
|---|---|
| istrkg.p |
|
| istrkg.d |
|
| istrkg.i |
|
| Ref | Expression |
|---|---|
| istrkgld |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istrkg.p |
. . 3
| |
| 2 | istrkg.d |
. . 3
| |
| 3 | istrkg.i |
. . 3
| |
| 4 | eqidd 2623 |
. . . . . 6
| |
| 5 | eqidd 2623 |
. . . . . 6
| |
| 6 | simp1 1061 |
. . . . . . 7
| |
| 7 | 6 | eqcomd 2628 |
. . . . . 6
|
| 8 | 4, 5, 7 | f1eq123d 6131 |
. . . . 5
|
| 9 | simp2 1062 |
. . . . . . . . . . . . . 14
| |
| 10 | 9 | eqcomd 2628 |
. . . . . . . . . . . . 13
|
| 11 | 10 | oveqd 6667 |
. . . . . . . . . . . 12
|
| 12 | 10 | oveqd 6667 |
. . . . . . . . . . . 12
|
| 13 | 11, 12 | eqeq12d 2637 |
. . . . . . . . . . 11
|
| 14 | 10 | oveqd 6667 |
. . . . . . . . . . . 12
|
| 15 | 10 | oveqd 6667 |
. . . . . . . . . . . 12
|
| 16 | 14, 15 | eqeq12d 2637 |
. . . . . . . . . . 11
|
| 17 | 10 | oveqd 6667 |
. . . . . . . . . . . 12
|
| 18 | 10 | oveqd 6667 |
. . . . . . . . . . . 12
|
| 19 | 17, 18 | eqeq12d 2637 |
. . . . . . . . . . 11
|
| 20 | 13, 16, 19 | 3anbi123d 1399 |
. . . . . . . . . 10
|
| 21 | 20 | ralbidv 2986 |
. . . . . . . . 9
|
| 22 | simp3 1063 |
. . . . . . . . . . . . . 14
| |
| 23 | 22 | eqcomd 2628 |
. . . . . . . . . . . . 13
|
| 24 | 23 | oveqd 6667 |
. . . . . . . . . . . 12
|
| 25 | 24 | eleq2d 2687 |
. . . . . . . . . . 11
|
| 26 | 23 | oveqd 6667 |
. . . . . . . . . . . 12
|
| 27 | 26 | eleq2d 2687 |
. . . . . . . . . . 11
|
| 28 | 23 | oveqd 6667 |
. . . . . . . . . . . 12
|
| 29 | 28 | eleq2d 2687 |
. . . . . . . . . . 11
|
| 30 | 25, 27, 29 | 3orbi123d 1398 |
. . . . . . . . . 10
|
| 31 | 30 | notbid 308 |
. . . . . . . . 9
|
| 32 | 21, 31 | anbi12d 747 |
. . . . . . . 8
|
| 33 | 7, 32 | rexeqbidv 3153 |
. . . . . . 7
|
| 34 | 7, 33 | rexeqbidv 3153 |
. . . . . 6
|
| 35 | 7, 34 | rexeqbidv 3153 |
. . . . 5
|
| 36 | 8, 35 | anbi12d 747 |
. . . 4
|
| 37 | 36 | exbidv 1850 |
. . 3
|
| 38 | 1, 2, 3, 37 | sbcie3s 15917 |
. 2
|
| 39 | eqidd 2623 |
. . . . 5
| |
| 40 | oveq2 6658 |
. . . . 5
| |
| 41 | eqidd 2623 |
. . . . 5
| |
| 42 | 39, 40, 41 | f1eq123d 6131 |
. . . 4
|
| 43 | oveq2 6658 |
. . . . . . . 8
| |
| 44 | 43 | raleqdv 3144 |
. . . . . . 7
|
| 45 | 44 | anbi1d 741 |
. . . . . 6
|
| 46 | 45 | rexbidv 3052 |
. . . . 5
|
| 47 | 46 | 2rexbidv 3057 |
. . . 4
|
| 48 | 42, 47 | anbi12d 747 |
. . 3
|
| 49 | 48 | exbidv 1850 |
. 2
|
| 50 | df-trkgld 25351 |
. 2
| |
| 51 | 38, 49, 50 | brabg 4994 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fv 5896 df-ov 6653 df-trkgld 25351 |
| This theorem is referenced by: istrkg2ld 25359 istrkg3ld 25360 |
| Copyright terms: Public domain | W3C validator |