| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > istrkgl | Structured version Visualization version Unicode version | ||
| Description: Building lines from the segment property. (Contributed by Thierry Arnoux, 14-Mar-2019.) |
| Ref | Expression |
|---|---|
| istrkg.p |
|
| istrkg.d |
|
| istrkg.i |
|
| Ref | Expression |
|---|---|
| istrkgl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istrkg.p |
. . . 4
| |
| 2 | istrkg.i |
. . . 4
| |
| 3 | simpl 473 |
. . . . . . 7
| |
| 4 | 3 | eqcomd 2628 |
. . . . . 6
|
| 5 | 4 | adantr 481 |
. . . . . . 7
|
| 6 | 5 | difeq1d 3727 |
. . . . . 6
|
| 7 | simpr 477 |
. . . . . . . . . . . 12
| |
| 8 | 7 | eqcomd 2628 |
. . . . . . . . . . 11
|
| 9 | 8 | oveqd 6667 |
. . . . . . . . . 10
|
| 10 | 9 | eleq2d 2687 |
. . . . . . . . 9
|
| 11 | 8 | oveqd 6667 |
. . . . . . . . . 10
|
| 12 | 11 | eleq2d 2687 |
. . . . . . . . 9
|
| 13 | 8 | oveqd 6667 |
. . . . . . . . . 10
|
| 14 | 13 | eleq2d 2687 |
. . . . . . . . 9
|
| 15 | 10, 12, 14 | 3orbi123d 1398 |
. . . . . . . 8
|
| 16 | 4, 15 | rabeqbidv 3195 |
. . . . . . 7
|
| 17 | 16 | adantr 481 |
. . . . . 6
|
| 18 | 4, 6, 17 | mpt2eq123dva 6716 |
. . . . 5
|
| 19 | 18 | eqeq2d 2632 |
. . . 4
|
| 20 | 1, 2, 19 | sbcie2s 15916 |
. . 3
|
| 21 | fveq2 6191 |
. . . 4
| |
| 22 | 21 | eqeq1d 2624 |
. . 3
|
| 23 | 20, 22 | bitrd 268 |
. 2
|
| 24 | eqid 2622 |
. 2
| |
| 25 | 23, 24 | elab4g 3355 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-nul 4789 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 |
| This theorem is referenced by: tglng 25441 f1otrg 25751 eengtrkg 25865 |
| Copyright terms: Public domain | W3C validator |