MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iswspthn Structured version   Visualization version   Unicode version

Theorem iswspthn 26736
Description: An element of the set of simple paths of a fixed length as word. (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 11-May-2021.)
Assertion
Ref Expression
iswspthn  |-  ( W  e.  ( N WSPathsN  G )  <-> 
( W  e.  ( N WWalksN  G )  /\  E. f  f (SPaths `  G ) W ) )
Distinct variable groups:    f, G    f, W
Allowed substitution hint:    N( f)

Proof of Theorem iswspthn
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 breq2 4657 . . 3  |-  ( w  =  W  ->  (
f (SPaths `  G
) w  <->  f (SPaths `  G ) W ) )
21exbidv 1850 . 2  |-  ( w  =  W  ->  ( E. f  f (SPaths `  G ) w  <->  E. f 
f (SPaths `  G
) W ) )
3 wspthsn 26735 . 2  |-  ( N WSPathsN  G )  =  {
w  e.  ( N WWalksN  G )  |  E. f  f (SPaths `  G ) w }
42, 3elrab2 3366 1  |-  ( W  e.  ( N WSPathsN  G )  <-> 
( W  e.  ( N WWalksN  G )  /\  E. f  f (SPaths `  G ) W ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   class class class wbr 4653   ` cfv 5888  (class class class)co 6650  SPathscspths 26609   WWalksN cwwlksn 26718   WSPathsN cwwspthsn 26720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-wwlksn 26723  df-wspthsn 26725
This theorem is referenced by:  wspthnp  26737  wspthsnwspthsnon  26811
  Copyright terms: Public domain W3C validator