MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpprc Structured version   Visualization version   Unicode version

Theorem ixpprc 7929
Description: A cartesian product of proper-class many sets is empty, because any function in the cartesian product has to be a set with domain  A, which is not possible for a proper class domain. (Contributed by Mario Carneiro, 25-Jan-2015.)
Assertion
Ref Expression
ixpprc  |-  ( -.  A  e.  _V  ->  X_ x  e.  A  B  =  (/) )
Distinct variable group:    x, A
Allowed substitution hint:    B( x)

Proof of Theorem ixpprc
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 neq0 3930 . . 3  |-  ( -.  X_ x  e.  A  B  =  (/)  <->  E. f 
f  e.  X_ x  e.  A  B )
2 ixpfn 7914 . . . . 5  |-  ( f  e.  X_ x  e.  A  B  ->  f  Fn  A
)
3 fndm 5990 . . . . . 6  |-  ( f  Fn  A  ->  dom  f  =  A )
4 vex 3203 . . . . . . 7  |-  f  e. 
_V
54dmex 7099 . . . . . 6  |-  dom  f  e.  _V
63, 5syl6eqelr 2710 . . . . 5  |-  ( f  Fn  A  ->  A  e.  _V )
72, 6syl 17 . . . 4  |-  ( f  e.  X_ x  e.  A  B  ->  A  e.  _V )
87exlimiv 1858 . . 3  |-  ( E. f  f  e.  X_ x  e.  A  B  ->  A  e.  _V )
91, 8sylbi 207 . 2  |-  ( -.  X_ x  e.  A  B  =  (/)  ->  A  e.  _V )
109con1i 144 1  |-  ( -.  A  e.  _V  ->  X_ x  e.  A  B  =  (/) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1483   E.wex 1704    e. wcel 1990   _Vcvv 3200   (/)c0 3915   dom cdm 5114    Fn wfn 5883   X_cixp 7908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896  df-ixp 7909
This theorem is referenced by:  ixpexg  7932  ixpssmap2g  7937  ixpssmapg  7938  resixpfo  7946
  Copyright terms: Public domain W3C validator