Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  kur14 Structured version   Visualization version   Unicode version

Theorem kur14 31198
Description: Kuratowski's closure-complement theorem. There are at most 14 sets which can be obtained by the application of the closure and complement operations to a set in a topological space. (Contributed by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
kur14.x  |-  X  = 
U. J
kur14.k  |-  K  =  ( cls `  J
)
kur14.s  |-  S  = 
|^| { x  e.  ~P ~P X  |  ( A  e.  x  /\  A. y  e.  x  {
( X  \  y
) ,  ( K `
 y ) } 
C_  x ) }
Assertion
Ref Expression
kur14  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( S  e.  Fin  /\  ( # `  S
)  <_ ; 1 4 ) )
Distinct variable groups:    x, y, A    x, J, y    x, X
Allowed substitution hints:    S( x, y)    K( x, y)    X( y)

Proof of Theorem kur14
StepHypRef Expression
1 kur14.s . . . . . 6  |-  S  = 
|^| { x  e.  ~P ~P X  |  ( A  e.  x  /\  A. y  e.  x  {
( X  \  y
) ,  ( K `
 y ) } 
C_  x ) }
2 eleq1 2689 . . . . . . . . 9  |-  ( A  =  if ( A 
C_  X ,  A ,  (/) )  ->  ( A  e.  x  <->  if ( A  C_  X ,  A ,  (/) )  e.  x
) )
32anbi1d 741 . . . . . . . 8  |-  ( A  =  if ( A 
C_  X ,  A ,  (/) )  ->  (
( A  e.  x  /\  A. y  e.  x  { ( X  \ 
y ) ,  ( K `  y ) }  C_  x )  <->  ( if ( A  C_  X ,  A ,  (/) )  e.  x  /\  A. y  e.  x  {
( X  \  y
) ,  ( K `
 y ) } 
C_  x ) ) )
43rabbidv 3189 . . . . . . 7  |-  ( A  =  if ( A 
C_  X ,  A ,  (/) )  ->  { x  e.  ~P ~P X  | 
( A  e.  x  /\  A. y  e.  x  { ( X  \ 
y ) ,  ( K `  y ) }  C_  x ) }  =  { x  e.  ~P ~P X  | 
( if ( A 
C_  X ,  A ,  (/) )  e.  x  /\  A. y  e.  x  { ( X  \ 
y ) ,  ( K `  y ) }  C_  x ) } )
54inteqd 4480 . . . . . 6  |-  ( A  =  if ( A 
C_  X ,  A ,  (/) )  ->  |^| { x  e.  ~P ~P X  | 
( A  e.  x  /\  A. y  e.  x  { ( X  \ 
y ) ,  ( K `  y ) }  C_  x ) }  =  |^| { x  e.  ~P ~P X  | 
( if ( A 
C_  X ,  A ,  (/) )  e.  x  /\  A. y  e.  x  { ( X  \ 
y ) ,  ( K `  y ) }  C_  x ) } )
61, 5syl5eq 2668 . . . . 5  |-  ( A  =  if ( A 
C_  X ,  A ,  (/) )  ->  S  =  |^| { x  e. 
~P ~P X  | 
( if ( A 
C_  X ,  A ,  (/) )  e.  x  /\  A. y  e.  x  { ( X  \ 
y ) ,  ( K `  y ) }  C_  x ) } )
76eleq1d 2686 . . . 4  |-  ( A  =  if ( A 
C_  X ,  A ,  (/) )  ->  ( S  e.  Fin  <->  |^| { x  e.  ~P ~P X  | 
( if ( A 
C_  X ,  A ,  (/) )  e.  x  /\  A. y  e.  x  { ( X  \ 
y ) ,  ( K `  y ) }  C_  x ) }  e.  Fin )
)
86fveq2d 6195 . . . . 5  |-  ( A  =  if ( A 
C_  X ,  A ,  (/) )  ->  ( # `
 S )  =  ( # `  |^| { x  e.  ~P ~P X  |  ( if ( A  C_  X ,  A ,  (/) )  e.  x  /\  A. y  e.  x  { ( X  \  y ) ,  ( K `  y
) }  C_  x
) } ) )
98breq1d 4663 . . . 4  |-  ( A  =  if ( A 
C_  X ,  A ,  (/) )  ->  (
( # `  S )  <_ ; 1 4  <->  ( # `  |^| { x  e.  ~P ~P X  |  ( if ( A  C_  X ,  A ,  (/) )  e.  x  /\  A. y  e.  x  { ( X  \  y ) ,  ( K `  y
) }  C_  x
) } )  <_ ; 1 4 ) )
107, 9anbi12d 747 . . 3  |-  ( A  =  if ( A 
C_  X ,  A ,  (/) )  ->  (
( S  e.  Fin  /\  ( # `  S
)  <_ ; 1 4 )  <->  ( |^| { x  e.  ~P ~P X  |  ( if ( A  C_  X ,  A ,  (/) )  e.  x  /\  A. y  e.  x  { ( X  \  y ) ,  ( K `  y
) }  C_  x
) }  e.  Fin  /\  ( # `  |^| { x  e.  ~P ~P X  |  ( if ( A  C_  X ,  A ,  (/) )  e.  x  /\  A. y  e.  x  { ( X  \  y ) ,  ( K `  y
) }  C_  x
) } )  <_ ; 1 4 ) ) )
11 kur14.x . . . . . . . . . 10  |-  X  = 
U. J
12 unieq 4444 . . . . . . . . . 10  |-  ( J  =  if ( J  e.  Top ,  J ,  { (/) } )  ->  U. J  =  U. if ( J  e.  Top ,  J ,  { (/) } ) )
1311, 12syl5eq 2668 . . . . . . . . 9  |-  ( J  =  if ( J  e.  Top ,  J ,  { (/) } )  ->  X  =  U. if ( J  e.  Top ,  J ,  { (/) } ) )
1413pweqd 4163 . . . . . . . 8  |-  ( J  =  if ( J  e.  Top ,  J ,  { (/) } )  ->  ~P X  =  ~P U. if ( J  e. 
Top ,  J ,  { (/) } ) )
1514pweqd 4163 . . . . . . 7  |-  ( J  =  if ( J  e.  Top ,  J ,  { (/) } )  ->  ~P ~P X  =  ~P ~P U. if ( J  e.  Top ,  J ,  { (/) } ) )
1613sseq2d 3633 . . . . . . . . . . 11  |-  ( J  =  if ( J  e.  Top ,  J ,  { (/) } )  -> 
( A  C_  X  <->  A 
C_  U. if ( J  e.  Top ,  J ,  { (/) } ) ) )
17 sn0top 20803 . . . . . . . . . . . . . 14  |-  { (/) }  e.  Top
1817elimel 4150 . . . . . . . . . . . . 13  |-  if ( J  e.  Top ,  J ,  { (/) } )  e.  Top
19 uniexg 6955 . . . . . . . . . . . . 13  |-  ( if ( J  e.  Top ,  J ,  { (/) } )  e.  Top  ->  U. if ( J  e. 
Top ,  J ,  { (/) } )  e. 
_V )
2018, 19ax-mp 5 . . . . . . . . . . . 12  |-  U. if ( J  e.  Top ,  J ,  { (/) } )  e.  _V
2120elpw2 4828 . . . . . . . . . . 11  |-  ( A  e.  ~P U. if ( J  e.  Top ,  J ,  { (/) } )  <->  A  C_  U. if ( J  e.  Top ,  J ,  { (/) } ) )
2216, 21syl6bbr 278 . . . . . . . . . 10  |-  ( J  =  if ( J  e.  Top ,  J ,  { (/) } )  -> 
( A  C_  X  <->  A  e.  ~P U. if ( J  e.  Top ,  J ,  { (/) } ) ) )
2322ifbid 4108 . . . . . . . . 9  |-  ( J  =  if ( J  e.  Top ,  J ,  { (/) } )  ->  if ( A  C_  X ,  A ,  (/) )  =  if ( A  e. 
~P U. if ( J  e.  Top ,  J ,  { (/) } ) ,  A ,  (/) ) )
2423eleq1d 2686 . . . . . . . 8  |-  ( J  =  if ( J  e.  Top ,  J ,  { (/) } )  -> 
( if ( A 
C_  X ,  A ,  (/) )  e.  x  <->  if ( A  e.  ~P U. if ( J  e. 
Top ,  J ,  { (/) } ) ,  A ,  (/) )  e.  x ) )
2513difeq1d 3727 . . . . . . . . . . 11  |-  ( J  =  if ( J  e.  Top ,  J ,  { (/) } )  -> 
( X  \  y
)  =  ( U. if ( J  e.  Top ,  J ,  { (/) } )  \  y ) )
26 kur14.k . . . . . . . . . . . . 13  |-  K  =  ( cls `  J
)
27 fveq2 6191 . . . . . . . . . . . . 13  |-  ( J  =  if ( J  e.  Top ,  J ,  { (/) } )  -> 
( cls `  J
)  =  ( cls `  if ( J  e. 
Top ,  J ,  { (/) } ) ) )
2826, 27syl5eq 2668 . . . . . . . . . . . 12  |-  ( J  =  if ( J  e.  Top ,  J ,  { (/) } )  ->  K  =  ( cls `  if ( J  e. 
Top ,  J ,  { (/) } ) ) )
2928fveq1d 6193 . . . . . . . . . . 11  |-  ( J  =  if ( J  e.  Top ,  J ,  { (/) } )  -> 
( K `  y
)  =  ( ( cls `  if ( J  e.  Top ,  J ,  { (/) } ) ) `  y ) )
3025, 29preq12d 4276 . . . . . . . . . 10  |-  ( J  =  if ( J  e.  Top ,  J ,  { (/) } )  ->  { ( X  \ 
y ) ,  ( K `  y ) }  =  { ( U. if ( J  e.  Top ,  J ,  { (/) } )  \ 
y ) ,  ( ( cls `  if ( J  e.  Top ,  J ,  { (/) } ) ) `  y
) } )
3130sseq1d 3632 . . . . . . . . 9  |-  ( J  =  if ( J  e.  Top ,  J ,  { (/) } )  -> 
( { ( X 
\  y ) ,  ( K `  y
) }  C_  x  <->  { ( U. if ( J  e.  Top ,  J ,  { (/) } ) 
\  y ) ,  ( ( cls `  if ( J  e.  Top ,  J ,  { (/) } ) ) `  y
) }  C_  x
) )
3231ralbidv 2986 . . . . . . . 8  |-  ( J  =  if ( J  e.  Top ,  J ,  { (/) } )  -> 
( A. y  e.  x  { ( X 
\  y ) ,  ( K `  y
) }  C_  x  <->  A. y  e.  x  {
( U. if ( J  e.  Top ,  J ,  { (/) } ) 
\  y ) ,  ( ( cls `  if ( J  e.  Top ,  J ,  { (/) } ) ) `  y
) }  C_  x
) )
3324, 32anbi12d 747 . . . . . . 7  |-  ( J  =  if ( J  e.  Top ,  J ,  { (/) } )  -> 
( ( if ( A  C_  X ,  A ,  (/) )  e.  x  /\  A. y  e.  x  { ( X  \  y ) ,  ( K `  y
) }  C_  x
)  <->  ( if ( A  e.  ~P U. if ( J  e.  Top ,  J ,  { (/) } ) ,  A ,  (/) )  e.  x  /\  A. y  e.  x  {
( U. if ( J  e.  Top ,  J ,  { (/) } ) 
\  y ) ,  ( ( cls `  if ( J  e.  Top ,  J ,  { (/) } ) ) `  y
) }  C_  x
) ) )
3415, 33rabeqbidv 3195 . . . . . 6  |-  ( J  =  if ( J  e.  Top ,  J ,  { (/) } )  ->  { x  e.  ~P ~P X  |  ( if ( A  C_  X ,  A ,  (/) )  e.  x  /\  A. y  e.  x  { ( X  \  y ) ,  ( K `  y
) }  C_  x
) }  =  {
x  e.  ~P ~P U. if ( J  e. 
Top ,  J ,  { (/) } )  |  ( if ( A  e.  ~P U. if ( J  e.  Top ,  J ,  { (/) } ) ,  A ,  (/) )  e.  x  /\  A. y  e.  x  {
( U. if ( J  e.  Top ,  J ,  { (/) } ) 
\  y ) ,  ( ( cls `  if ( J  e.  Top ,  J ,  { (/) } ) ) `  y
) }  C_  x
) } )
3534inteqd 4480 . . . . 5  |-  ( J  =  if ( J  e.  Top ,  J ,  { (/) } )  ->  |^| { x  e.  ~P ~P X  |  ( if ( A  C_  X ,  A ,  (/) )  e.  x  /\  A. y  e.  x  { ( X  \  y ) ,  ( K `  y
) }  C_  x
) }  =  |^| { x  e.  ~P ~P U. if ( J  e. 
Top ,  J ,  { (/) } )  |  ( if ( A  e.  ~P U. if ( J  e.  Top ,  J ,  { (/) } ) ,  A ,  (/) )  e.  x  /\  A. y  e.  x  {
( U. if ( J  e.  Top ,  J ,  { (/) } ) 
\  y ) ,  ( ( cls `  if ( J  e.  Top ,  J ,  { (/) } ) ) `  y
) }  C_  x
) } )
3635eleq1d 2686 . . . 4  |-  ( J  =  if ( J  e.  Top ,  J ,  { (/) } )  -> 
( |^| { x  e. 
~P ~P X  | 
( if ( A 
C_  X ,  A ,  (/) )  e.  x  /\  A. y  e.  x  { ( X  \ 
y ) ,  ( K `  y ) }  C_  x ) }  e.  Fin  <->  |^| { x  e.  ~P ~P U. if ( J  e.  Top ,  J ,  { (/) } )  |  ( if ( A  e.  ~P U. if ( J  e. 
Top ,  J ,  { (/) } ) ,  A ,  (/) )  e.  x  /\  A. y  e.  x  { ( U. if ( J  e. 
Top ,  J ,  { (/) } )  \ 
y ) ,  ( ( cls `  if ( J  e.  Top ,  J ,  { (/) } ) ) `  y
) }  C_  x
) }  e.  Fin ) )
3735fveq2d 6195 . . . . 5  |-  ( J  =  if ( J  e.  Top ,  J ,  { (/) } )  -> 
( # `  |^| { x  e.  ~P ~P X  | 
( if ( A 
C_  X ,  A ,  (/) )  e.  x  /\  A. y  e.  x  { ( X  \ 
y ) ,  ( K `  y ) }  C_  x ) } )  =  (
# `  |^| { x  e.  ~P ~P U. if ( J  e.  Top ,  J ,  { (/) } )  |  ( if ( A  e.  ~P U. if ( J  e. 
Top ,  J ,  { (/) } ) ,  A ,  (/) )  e.  x  /\  A. y  e.  x  { ( U. if ( J  e. 
Top ,  J ,  { (/) } )  \ 
y ) ,  ( ( cls `  if ( J  e.  Top ,  J ,  { (/) } ) ) `  y
) }  C_  x
) } ) )
3837breq1d 4663 . . . 4  |-  ( J  =  if ( J  e.  Top ,  J ,  { (/) } )  -> 
( ( # `  |^| { x  e.  ~P ~P X  |  ( if ( A  C_  X ,  A ,  (/) )  e.  x  /\  A. y  e.  x  { ( X  \  y ) ,  ( K `  y
) }  C_  x
) } )  <_ ; 1 4  <-> 
( # `  |^| { x  e.  ~P ~P U. if ( J  e.  Top ,  J ,  { (/) } )  |  ( if ( A  e.  ~P U. if ( J  e. 
Top ,  J ,  { (/) } ) ,  A ,  (/) )  e.  x  /\  A. y  e.  x  { ( U. if ( J  e. 
Top ,  J ,  { (/) } )  \ 
y ) ,  ( ( cls `  if ( J  e.  Top ,  J ,  { (/) } ) ) `  y
) }  C_  x
) } )  <_ ; 1 4 ) )
3936, 38anbi12d 747 . . 3  |-  ( J  =  if ( J  e.  Top ,  J ,  { (/) } )  -> 
( ( |^| { x  e.  ~P ~P X  | 
( if ( A 
C_  X ,  A ,  (/) )  e.  x  /\  A. y  e.  x  { ( X  \ 
y ) ,  ( K `  y ) }  C_  x ) }  e.  Fin  /\  ( # `
 |^| { x  e. 
~P ~P X  | 
( if ( A 
C_  X ,  A ,  (/) )  e.  x  /\  A. y  e.  x  { ( X  \ 
y ) ,  ( K `  y ) }  C_  x ) } )  <_ ; 1 4 )  <->  ( |^| { x  e.  ~P ~P U. if ( J  e. 
Top ,  J ,  { (/) } )  |  ( if ( A  e.  ~P U. if ( J  e.  Top ,  J ,  { (/) } ) ,  A ,  (/) )  e.  x  /\  A. y  e.  x  {
( U. if ( J  e.  Top ,  J ,  { (/) } ) 
\  y ) ,  ( ( cls `  if ( J  e.  Top ,  J ,  { (/) } ) ) `  y
) }  C_  x
) }  e.  Fin  /\  ( # `  |^| { x  e.  ~P ~P U. if ( J  e. 
Top ,  J ,  { (/) } )  |  ( if ( A  e.  ~P U. if ( J  e.  Top ,  J ,  { (/) } ) ,  A ,  (/) )  e.  x  /\  A. y  e.  x  {
( U. if ( J  e.  Top ,  J ,  { (/) } ) 
\  y ) ,  ( ( cls `  if ( J  e.  Top ,  J ,  { (/) } ) ) `  y
) }  C_  x
) } )  <_ ; 1 4 ) ) )
40 eqid 2622 . . . 4  |-  U. if ( J  e.  Top ,  J ,  { (/) } )  =  U. if ( J  e.  Top ,  J ,  { (/) } )
41 eqid 2622 . . . 4  |-  ( cls `  if ( J  e. 
Top ,  J ,  { (/) } ) )  =  ( cls `  if ( J  e.  Top ,  J ,  { (/) } ) )
42 eqid 2622 . . . 4  |-  |^| { x  e.  ~P ~P U. if ( J  e.  Top ,  J ,  { (/) } )  |  ( if ( A  e.  ~P U. if ( J  e. 
Top ,  J ,  { (/) } ) ,  A ,  (/) )  e.  x  /\  A. y  e.  x  { ( U. if ( J  e. 
Top ,  J ,  { (/) } )  \ 
y ) ,  ( ( cls `  if ( J  e.  Top ,  J ,  { (/) } ) ) `  y
) }  C_  x
) }  =  |^| { x  e.  ~P ~P U. if ( J  e. 
Top ,  J ,  { (/) } )  |  ( if ( A  e.  ~P U. if ( J  e.  Top ,  J ,  { (/) } ) ,  A ,  (/) )  e.  x  /\  A. y  e.  x  {
( U. if ( J  e.  Top ,  J ,  { (/) } ) 
\  y ) ,  ( ( cls `  if ( J  e.  Top ,  J ,  { (/) } ) ) `  y
) }  C_  x
) }
43 0elpw 4834 . . . . . 6  |-  (/)  e.  ~P U. if ( J  e. 
Top ,  J ,  { (/) } )
4443elimel 4150 . . . . 5  |-  if ( A  e.  ~P U. if ( J  e.  Top ,  J ,  { (/) } ) ,  A ,  (/) )  e.  ~P U. if ( J  e.  Top ,  J ,  { (/) } )
45 elpwi 4168 . . . . 5  |-  ( if ( A  e.  ~P U. if ( J  e. 
Top ,  J ,  { (/) } ) ,  A ,  (/) )  e. 
~P U. if ( J  e.  Top ,  J ,  { (/) } )  ->  if ( A  e.  ~P U. if ( J  e. 
Top ,  J ,  { (/) } ) ,  A ,  (/) )  C_  U. if ( J  e. 
Top ,  J ,  { (/) } ) )
4644, 45ax-mp 5 . . . 4  |-  if ( A  e.  ~P U. if ( J  e.  Top ,  J ,  { (/) } ) ,  A ,  (/) )  C_  U. if ( J  e.  Top ,  J ,  { (/) } )
4718, 40, 41, 42, 46kur14lem10 31197 . . 3  |-  ( |^| { x  e.  ~P ~P U. if ( J  e. 
Top ,  J ,  { (/) } )  |  ( if ( A  e.  ~P U. if ( J  e.  Top ,  J ,  { (/) } ) ,  A ,  (/) )  e.  x  /\  A. y  e.  x  {
( U. if ( J  e.  Top ,  J ,  { (/) } ) 
\  y ) ,  ( ( cls `  if ( J  e.  Top ,  J ,  { (/) } ) ) `  y
) }  C_  x
) }  e.  Fin  /\  ( # `  |^| { x  e.  ~P ~P U. if ( J  e. 
Top ,  J ,  { (/) } )  |  ( if ( A  e.  ~P U. if ( J  e.  Top ,  J ,  { (/) } ) ,  A ,  (/) )  e.  x  /\  A. y  e.  x  {
( U. if ( J  e.  Top ,  J ,  { (/) } ) 
\  y ) ,  ( ( cls `  if ( J  e.  Top ,  J ,  { (/) } ) ) `  y
) }  C_  x
) } )  <_ ; 1 4 )
4810, 39, 47dedth2h 4140 . 2  |-  ( ( A  C_  X  /\  J  e.  Top )  ->  ( S  e.  Fin  /\  ( # `  S
)  <_ ; 1 4 ) )
4948ancoms 469 1  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( S  e.  Fin  /\  ( # `  S
)  <_ ; 1 4 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916   _Vcvv 3200    \ cdif 3571    C_ wss 3574   (/)c0 3915   ifcif 4086   ~Pcpw 4158   {csn 4177   {cpr 4179   U.cuni 4436   |^|cint 4475   class class class wbr 4653   ` cfv 5888   Fincfn 7955   1c1 9937    <_ cle 10075   4c4 11072  ;cdc 11493   #chash 13117   Topctop 20698   clsccl 20822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-hash 13118  df-top 20699  df-topon 20716  df-cld 20823  df-ntr 20824  df-cls 20825
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator