Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcvbr Structured version   Visualization version   GIF version

Theorem lcvbr 34308
Description: The covers relation for a left vector space (or a left module). (cvbr 29141 analog.) (Contributed by NM, 9-Jan-2015.)
Hypotheses
Ref Expression
lcvfbr.s 𝑆 = (LSubSp‘𝑊)
lcvfbr.c 𝐶 = ( ⋖L𝑊)
lcvfbr.w (𝜑𝑊𝑋)
lcvfbr.t (𝜑𝑇𝑆)
lcvfbr.u (𝜑𝑈𝑆)
Assertion
Ref Expression
lcvbr (𝜑 → (𝑇𝐶𝑈 ↔ (𝑇𝑈 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈))))
Distinct variable groups:   𝑆,𝑠   𝑊,𝑠   𝑇,𝑠   𝑈,𝑠
Allowed substitution hints:   𝜑(𝑠)   𝐶(𝑠)   𝑋(𝑠)

Proof of Theorem lcvbr
Dummy variables 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lcvfbr.t . . 3 (𝜑𝑇𝑆)
2 lcvfbr.u . . 3 (𝜑𝑈𝑆)
3 eleq1 2689 . . . . . 6 (𝑡 = 𝑇 → (𝑡𝑆𝑇𝑆))
43anbi1d 741 . . . . 5 (𝑡 = 𝑇 → ((𝑡𝑆𝑢𝑆) ↔ (𝑇𝑆𝑢𝑆)))
5 psseq1 3694 . . . . . 6 (𝑡 = 𝑇 → (𝑡𝑢𝑇𝑢))
6 psseq1 3694 . . . . . . . . 9 (𝑡 = 𝑇 → (𝑡𝑠𝑇𝑠))
76anbi1d 741 . . . . . . . 8 (𝑡 = 𝑇 → ((𝑡𝑠𝑠𝑢) ↔ (𝑇𝑠𝑠𝑢)))
87rexbidv 3052 . . . . . . 7 (𝑡 = 𝑇 → (∃𝑠𝑆 (𝑡𝑠𝑠𝑢) ↔ ∃𝑠𝑆 (𝑇𝑠𝑠𝑢)))
98notbid 308 . . . . . 6 (𝑡 = 𝑇 → (¬ ∃𝑠𝑆 (𝑡𝑠𝑠𝑢) ↔ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑢)))
105, 9anbi12d 747 . . . . 5 (𝑡 = 𝑇 → ((𝑡𝑢 ∧ ¬ ∃𝑠𝑆 (𝑡𝑠𝑠𝑢)) ↔ (𝑇𝑢 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑢))))
114, 10anbi12d 747 . . . 4 (𝑡 = 𝑇 → (((𝑡𝑆𝑢𝑆) ∧ (𝑡𝑢 ∧ ¬ ∃𝑠𝑆 (𝑡𝑠𝑠𝑢))) ↔ ((𝑇𝑆𝑢𝑆) ∧ (𝑇𝑢 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑢)))))
12 eleq1 2689 . . . . . 6 (𝑢 = 𝑈 → (𝑢𝑆𝑈𝑆))
1312anbi2d 740 . . . . 5 (𝑢 = 𝑈 → ((𝑇𝑆𝑢𝑆) ↔ (𝑇𝑆𝑈𝑆)))
14 psseq2 3695 . . . . . 6 (𝑢 = 𝑈 → (𝑇𝑢𝑇𝑈))
15 psseq2 3695 . . . . . . . . 9 (𝑢 = 𝑈 → (𝑠𝑢𝑠𝑈))
1615anbi2d 740 . . . . . . . 8 (𝑢 = 𝑈 → ((𝑇𝑠𝑠𝑢) ↔ (𝑇𝑠𝑠𝑈)))
1716rexbidv 3052 . . . . . . 7 (𝑢 = 𝑈 → (∃𝑠𝑆 (𝑇𝑠𝑠𝑢) ↔ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈)))
1817notbid 308 . . . . . 6 (𝑢 = 𝑈 → (¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑢) ↔ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈)))
1914, 18anbi12d 747 . . . . 5 (𝑢 = 𝑈 → ((𝑇𝑢 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑢)) ↔ (𝑇𝑈 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈))))
2013, 19anbi12d 747 . . . 4 (𝑢 = 𝑈 → (((𝑇𝑆𝑢𝑆) ∧ (𝑇𝑢 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑢))) ↔ ((𝑇𝑆𝑈𝑆) ∧ (𝑇𝑈 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈)))))
21 eqid 2622 . . . 4 {⟨𝑡, 𝑢⟩ ∣ ((𝑡𝑆𝑢𝑆) ∧ (𝑡𝑢 ∧ ¬ ∃𝑠𝑆 (𝑡𝑠𝑠𝑢)))} = {⟨𝑡, 𝑢⟩ ∣ ((𝑡𝑆𝑢𝑆) ∧ (𝑡𝑢 ∧ ¬ ∃𝑠𝑆 (𝑡𝑠𝑠𝑢)))}
2211, 20, 21brabg 4994 . . 3 ((𝑇𝑆𝑈𝑆) → (𝑇{⟨𝑡, 𝑢⟩ ∣ ((𝑡𝑆𝑢𝑆) ∧ (𝑡𝑢 ∧ ¬ ∃𝑠𝑆 (𝑡𝑠𝑠𝑢)))}𝑈 ↔ ((𝑇𝑆𝑈𝑆) ∧ (𝑇𝑈 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈)))))
231, 2, 22syl2anc 693 . 2 (𝜑 → (𝑇{⟨𝑡, 𝑢⟩ ∣ ((𝑡𝑆𝑢𝑆) ∧ (𝑡𝑢 ∧ ¬ ∃𝑠𝑆 (𝑡𝑠𝑠𝑢)))}𝑈 ↔ ((𝑇𝑆𝑈𝑆) ∧ (𝑇𝑈 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈)))))
24 lcvfbr.s . . . 4 𝑆 = (LSubSp‘𝑊)
25 lcvfbr.c . . . 4 𝐶 = ( ⋖L𝑊)
26 lcvfbr.w . . . 4 (𝜑𝑊𝑋)
2724, 25, 26lcvfbr 34307 . . 3 (𝜑𝐶 = {⟨𝑡, 𝑢⟩ ∣ ((𝑡𝑆𝑢𝑆) ∧ (𝑡𝑢 ∧ ¬ ∃𝑠𝑆 (𝑡𝑠𝑠𝑢)))})
2827breqd 4664 . 2 (𝜑 → (𝑇𝐶𝑈𝑇{⟨𝑡, 𝑢⟩ ∣ ((𝑡𝑆𝑢𝑆) ∧ (𝑡𝑢 ∧ ¬ ∃𝑠𝑆 (𝑡𝑠𝑠𝑢)))}𝑈))
291, 2jca 554 . . 3 (𝜑 → (𝑇𝑆𝑈𝑆))
3029biantrurd 529 . 2 (𝜑 → ((𝑇𝑈 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈)) ↔ ((𝑇𝑆𝑈𝑆) ∧ (𝑇𝑈 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈)))))
3123, 28, 303bitr4d 300 1 (𝜑 → (𝑇𝐶𝑈 ↔ (𝑇𝑈 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wrex 2913  wpss 3575   class class class wbr 4653  {copab 4712  cfv 5888  LSubSpclss 18932  L clcv 34305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-lcv 34306
This theorem is referenced by:  lcvbr2  34309  lcvbr3  34310  lcvpss  34311  lcvnbtwn  34312  lsatcv0  34318  mapdcv  36949
  Copyright terms: Public domain W3C validator