Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linds0 Structured version   Visualization version   Unicode version

Theorem linds0 42254
Description: The empty set is always a linearly independet subset. (Contributed by AV, 13-Apr-2019.) (Revised by AV, 27-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.)
Assertion
Ref Expression
linds0  |-  ( M  e.  V  ->  (/) linIndS  M )

Proof of Theorem linds0
Dummy variables  x  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ral0 4076 . . . . . 6  |-  A. x  e.  (/)  ( (/) `  x
)  =  ( 0g
`  (Scalar `  M )
)
212a1i 12 . . . . 5  |-  ( M  e.  V  ->  (
( (/) finSupp  ( 0g `  (Scalar `  M ) )  /\  ( (/) ( linC  `  M
) (/) )  =  ( 0g `  M ) )  ->  A. x  e.  (/)  ( (/) `  x
)  =  ( 0g
`  (Scalar `  M )
) ) )
3 0ex 4790 . . . . . 6  |-  (/)  e.  _V
4 breq1 4656 . . . . . . . . 9  |-  ( f  =  (/)  ->  ( f finSupp 
( 0g `  (Scalar `  M ) )  <->  (/) finSupp  ( 0g `  (Scalar `  M )
) ) )
5 oveq1 6657 . . . . . . . . . 10  |-  ( f  =  (/)  ->  ( f ( linC  `  M ) (/) )  =  ( (/) ( linC  `  M ) (/) ) )
65eqeq1d 2624 . . . . . . . . 9  |-  ( f  =  (/)  ->  ( ( f ( linC  `  M
) (/) )  =  ( 0g `  M )  <-> 
( (/) ( linC  `  M
) (/) )  =  ( 0g `  M ) ) )
74, 6anbi12d 747 . . . . . . . 8  |-  ( f  =  (/)  ->  ( ( f finSupp  ( 0g `  (Scalar `  M ) )  /\  ( f ( linC  `  M ) (/) )  =  ( 0g `  M
) )  <->  ( (/) finSupp  ( 0g
`  (Scalar `  M )
)  /\  ( (/) ( linC  `  M ) (/) )  =  ( 0g `  M
) ) ) )
8 fveq1 6190 . . . . . . . . . 10  |-  ( f  =  (/)  ->  ( f `
 x )  =  ( (/) `  x ) )
98eqeq1d 2624 . . . . . . . . 9  |-  ( f  =  (/)  ->  ( ( f `  x )  =  ( 0g `  (Scalar `  M ) )  <-> 
( (/) `  x )  =  ( 0g `  (Scalar `  M ) ) ) )
109ralbidv 2986 . . . . . . . 8  |-  ( f  =  (/)  ->  ( A. x  e.  (/)  ( f `
 x )  =  ( 0g `  (Scalar `  M ) )  <->  A. x  e.  (/)  ( (/) `  x
)  =  ( 0g
`  (Scalar `  M )
) ) )
117, 10imbi12d 334 . . . . . . 7  |-  ( f  =  (/)  ->  ( ( ( f finSupp  ( 0g
`  (Scalar `  M )
)  /\  ( f
( linC  `  M ) (/) )  =  ( 0g
`  M ) )  ->  A. x  e.  (/)  ( f `  x
)  =  ( 0g
`  (Scalar `  M )
) )  <->  ( ( (/) finSupp  ( 0g `  (Scalar `  M ) )  /\  ( (/) ( linC  `  M
) (/) )  =  ( 0g `  M ) )  ->  A. x  e.  (/)  ( (/) `  x
)  =  ( 0g
`  (Scalar `  M )
) ) ) )
1211ralsng 4218 . . . . . 6  |-  ( (/)  e.  _V  ->  ( A. f  e.  { (/) }  (
( f finSupp  ( 0g `  (Scalar `  M )
)  /\  ( f
( linC  `  M ) (/) )  =  ( 0g
`  M ) )  ->  A. x  e.  (/)  ( f `  x
)  =  ( 0g
`  (Scalar `  M )
) )  <->  ( ( (/) finSupp  ( 0g `  (Scalar `  M ) )  /\  ( (/) ( linC  `  M
) (/) )  =  ( 0g `  M ) )  ->  A. x  e.  (/)  ( (/) `  x
)  =  ( 0g
`  (Scalar `  M )
) ) ) )
133, 12mp1i 13 . . . . 5  |-  ( M  e.  V  ->  ( A. f  e.  { (/) }  ( ( f finSupp  ( 0g `  (Scalar `  M
) )  /\  (
f ( linC  `  M
) (/) )  =  ( 0g `  M ) )  ->  A. x  e.  (/)  ( f `  x )  =  ( 0g `  (Scalar `  M ) ) )  <-> 
( ( (/) finSupp  ( 0g
`  (Scalar `  M )
)  /\  ( (/) ( linC  `  M ) (/) )  =  ( 0g `  M
) )  ->  A. x  e.  (/)  ( (/) `  x
)  =  ( 0g
`  (Scalar `  M )
) ) ) )
142, 13mpbird 247 . . . 4  |-  ( M  e.  V  ->  A. f  e.  { (/) }  ( ( f finSupp  ( 0g `  (Scalar `  M ) )  /\  ( f ( linC  `  M ) (/) )  =  ( 0g `  M
) )  ->  A. x  e.  (/)  ( f `  x )  =  ( 0g `  (Scalar `  M ) ) ) )
15 fvex 6201 . . . . . . 7  |-  ( Base `  (Scalar `  M )
)  e.  _V
16 map0e 7895 . . . . . . 7  |-  ( (
Base `  (Scalar `  M
) )  e.  _V  ->  ( ( Base `  (Scalar `  M ) )  ^m  (/) )  =  1o )
1715, 16mp1i 13 . . . . . 6  |-  ( M  e.  V  ->  (
( Base `  (Scalar `  M
) )  ^m  (/) )  =  1o )
18 df1o2 7572 . . . . . 6  |-  1o  =  { (/) }
1917, 18syl6eq 2672 . . . . 5  |-  ( M  e.  V  ->  (
( Base `  (Scalar `  M
) )  ^m  (/) )  =  { (/) } )
2019raleqdv 3144 . . . 4  |-  ( M  e.  V  ->  ( A. f  e.  (
( Base `  (Scalar `  M
) )  ^m  (/) ) ( ( f finSupp  ( 0g
`  (Scalar `  M )
)  /\  ( f
( linC  `  M ) (/) )  =  ( 0g
`  M ) )  ->  A. x  e.  (/)  ( f `  x
)  =  ( 0g
`  (Scalar `  M )
) )  <->  A. f  e.  { (/) }  ( ( f finSupp  ( 0g `  (Scalar `  M ) )  /\  ( f ( linC  `  M ) (/) )  =  ( 0g `  M
) )  ->  A. x  e.  (/)  ( f `  x )  =  ( 0g `  (Scalar `  M ) ) ) ) )
2114, 20mpbird 247 . . 3  |-  ( M  e.  V  ->  A. f  e.  ( ( Base `  (Scalar `  M ) )  ^m  (/) ) ( ( f finSupp 
( 0g `  (Scalar `  M ) )  /\  ( f ( linC  `  M ) (/) )  =  ( 0g `  M
) )  ->  A. x  e.  (/)  ( f `  x )  =  ( 0g `  (Scalar `  M ) ) ) )
22 0elpw 4834 . . 3  |-  (/)  e.  ~P ( Base `  M )
2321, 22jctil 560 . 2  |-  ( M  e.  V  ->  ( (/) 
e.  ~P ( Base `  M
)  /\  A. f  e.  ( ( Base `  (Scalar `  M ) )  ^m  (/) ) ( ( f finSupp 
( 0g `  (Scalar `  M ) )  /\  ( f ( linC  `  M ) (/) )  =  ( 0g `  M
) )  ->  A. x  e.  (/)  ( f `  x )  =  ( 0g `  (Scalar `  M ) ) ) ) )
24 eqid 2622 . . . 4  |-  ( Base `  M )  =  (
Base `  M )
25 eqid 2622 . . . 4  |-  ( 0g
`  M )  =  ( 0g `  M
)
26 eqid 2622 . . . 4  |-  (Scalar `  M )  =  (Scalar `  M )
27 eqid 2622 . . . 4  |-  ( Base `  (Scalar `  M )
)  =  ( Base `  (Scalar `  M )
)
28 eqid 2622 . . . 4  |-  ( 0g
`  (Scalar `  M )
)  =  ( 0g
`  (Scalar `  M )
)
2924, 25, 26, 27, 28islininds 42235 . . 3  |-  ( (
(/)  e.  _V  /\  M  e.  V )  ->  ( (/) linIndS  M 
<->  ( (/)  e.  ~P ( Base `  M )  /\  A. f  e.  ( ( Base `  (Scalar `  M ) )  ^m  (/) ) ( ( f finSupp 
( 0g `  (Scalar `  M ) )  /\  ( f ( linC  `  M ) (/) )  =  ( 0g `  M
) )  ->  A. x  e.  (/)  ( f `  x )  =  ( 0g `  (Scalar `  M ) ) ) ) ) )
303, 29mpan 706 . 2  |-  ( M  e.  V  ->  ( (/) linIndS  M 
<->  ( (/)  e.  ~P ( Base `  M )  /\  A. f  e.  ( ( Base `  (Scalar `  M ) )  ^m  (/) ) ( ( f finSupp 
( 0g `  (Scalar `  M ) )  /\  ( f ( linC  `  M ) (/) )  =  ( 0g `  M
) )  ->  A. x  e.  (/)  ( f `  x )  =  ( 0g `  (Scalar `  M ) ) ) ) ) )
3123, 30mpbird 247 1  |-  ( M  e.  V  ->  (/) linIndS  M )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200   (/)c0 3915   ~Pcpw 4158   {csn 4177   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   1oc1o 7553    ^m cmap 7857   finSupp cfsupp 8275   Basecbs 15857  Scalarcsca 15944   0gc0g 16100   linC clinc 42193   linIndS clininds 42229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1o 7560  df-map 7859  df-lininds 42231
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator