HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnfnl Structured version   Visualization version   Unicode version

Theorem lnfnl 28790
Description: Basic linearity property of a linear functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
lnfnl  |-  ( ( ( T  e.  LinFn  /\  A  e.  CC )  /\  ( B  e. 
~H  /\  C  e.  ~H ) )  ->  ( T `  ( ( A  .h  B )  +h  C ) )  =  ( ( A  x.  ( T `  B ) )  +  ( T `
 C ) ) )

Proof of Theorem lnfnl
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ellnfn 28742 . . . . . 6  |-  ( T  e.  LinFn 
<->  ( T : ~H --> CC  /\  A. x  e.  CC  A. y  e. 
~H  A. z  e.  ~H  ( T `  ( ( x  .h  y )  +h  z ) )  =  ( ( x  x.  ( T `  y ) )  +  ( T `  z
) ) ) )
21simprbi 480 . . . . 5  |-  ( T  e.  LinFn  ->  A. x  e.  CC  A. y  e. 
~H  A. z  e.  ~H  ( T `  ( ( x  .h  y )  +h  z ) )  =  ( ( x  x.  ( T `  y ) )  +  ( T `  z
) ) )
3 oveq1 6657 . . . . . . . . 9  |-  ( x  =  A  ->  (
x  .h  y )  =  ( A  .h  y ) )
43oveq1d 6665 . . . . . . . 8  |-  ( x  =  A  ->  (
( x  .h  y
)  +h  z )  =  ( ( A  .h  y )  +h  z ) )
54fveq2d 6195 . . . . . . 7  |-  ( x  =  A  ->  ( T `  ( (
x  .h  y )  +h  z ) )  =  ( T `  ( ( A  .h  y )  +h  z
) ) )
6 oveq1 6657 . . . . . . . 8  |-  ( x  =  A  ->  (
x  x.  ( T `
 y ) )  =  ( A  x.  ( T `  y ) ) )
76oveq1d 6665 . . . . . . 7  |-  ( x  =  A  ->  (
( x  x.  ( T `  y )
)  +  ( T `
 z ) )  =  ( ( A  x.  ( T `  y ) )  +  ( T `  z
) ) )
85, 7eqeq12d 2637 . . . . . 6  |-  ( x  =  A  ->  (
( T `  (
( x  .h  y
)  +h  z ) )  =  ( ( x  x.  ( T `
 y ) )  +  ( T `  z ) )  <->  ( T `  ( ( A  .h  y )  +h  z
) )  =  ( ( A  x.  ( T `  y )
)  +  ( T `
 z ) ) ) )
9 oveq2 6658 . . . . . . . . 9  |-  ( y  =  B  ->  ( A  .h  y )  =  ( A  .h  B ) )
109oveq1d 6665 . . . . . . . 8  |-  ( y  =  B  ->  (
( A  .h  y
)  +h  z )  =  ( ( A  .h  B )  +h  z ) )
1110fveq2d 6195 . . . . . . 7  |-  ( y  =  B  ->  ( T `  ( ( A  .h  y )  +h  z ) )  =  ( T `  (
( A  .h  B
)  +h  z ) ) )
12 fveq2 6191 . . . . . . . . 9  |-  ( y  =  B  ->  ( T `  y )  =  ( T `  B ) )
1312oveq2d 6666 . . . . . . . 8  |-  ( y  =  B  ->  ( A  x.  ( T `  y ) )  =  ( A  x.  ( T `  B )
) )
1413oveq1d 6665 . . . . . . 7  |-  ( y  =  B  ->  (
( A  x.  ( T `  y )
)  +  ( T `
 z ) )  =  ( ( A  x.  ( T `  B ) )  +  ( T `  z
) ) )
1511, 14eqeq12d 2637 . . . . . 6  |-  ( y  =  B  ->  (
( T `  (
( A  .h  y
)  +h  z ) )  =  ( ( A  x.  ( T `
 y ) )  +  ( T `  z ) )  <->  ( T `  ( ( A  .h  B )  +h  z
) )  =  ( ( A  x.  ( T `  B )
)  +  ( T `
 z ) ) ) )
16 oveq2 6658 . . . . . . . 8  |-  ( z  =  C  ->  (
( A  .h  B
)  +h  z )  =  ( ( A  .h  B )  +h  C ) )
1716fveq2d 6195 . . . . . . 7  |-  ( z  =  C  ->  ( T `  ( ( A  .h  B )  +h  z ) )  =  ( T `  (
( A  .h  B
)  +h  C ) ) )
18 fveq2 6191 . . . . . . . 8  |-  ( z  =  C  ->  ( T `  z )  =  ( T `  C ) )
1918oveq2d 6666 . . . . . . 7  |-  ( z  =  C  ->  (
( A  x.  ( T `  B )
)  +  ( T `
 z ) )  =  ( ( A  x.  ( T `  B ) )  +  ( T `  C
) ) )
2017, 19eqeq12d 2637 . . . . . 6  |-  ( z  =  C  ->  (
( T `  (
( A  .h  B
)  +h  z ) )  =  ( ( A  x.  ( T `
 B ) )  +  ( T `  z ) )  <->  ( T `  ( ( A  .h  B )  +h  C
) )  =  ( ( A  x.  ( T `  B )
)  +  ( T `
 C ) ) ) )
218, 15, 20rspc3v 3325 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  ~H  /\  C  e.  ~H )  ->  ( A. x  e.  CC  A. y  e.  ~H  A. z  e.  ~H  ( T `  ( (
x  .h  y )  +h  z ) )  =  ( ( x  x.  ( T `  y ) )  +  ( T `  z
) )  ->  ( T `  ( ( A  .h  B )  +h  C ) )  =  ( ( A  x.  ( T `  B ) )  +  ( T `
 C ) ) ) )
222, 21syl5 34 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  ~H  /\  C  e.  ~H )  ->  ( T  e.  LinFn  ->  ( T `  ( ( A  .h  B )  +h  C ) )  =  ( ( A  x.  ( T `  B ) )  +  ( T `
 C ) ) ) )
23223expb 1266 . . 3  |-  ( ( A  e.  CC  /\  ( B  e.  ~H  /\  C  e.  ~H )
)  ->  ( T  e.  LinFn  ->  ( T `  ( ( A  .h  B )  +h  C
) )  =  ( ( A  x.  ( T `  B )
)  +  ( T `
 C ) ) ) )
2423impcom 446 . 2  |-  ( ( T  e.  LinFn  /\  ( A  e.  CC  /\  ( B  e.  ~H  /\  C  e.  ~H ) ) )  ->  ( T `  ( ( A  .h  B )  +h  C
) )  =  ( ( A  x.  ( T `  B )
)  +  ( T `
 C ) ) )
2524anassrs 680 1  |-  ( ( ( T  e.  LinFn  /\  A  e.  CC )  /\  ( B  e. 
~H  /\  C  e.  ~H ) )  ->  ( T `  ( ( A  .h  B )  +h  C ) )  =  ( ( A  x.  ( T `  B ) )  +  ( T `
 C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934    + caddc 9939    x. cmul 9941   ~Hchil 27776    +h cva 27777    .h csm 27778   LinFnclf 27811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-hilex 27856
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-lnfn 28707
This theorem is referenced by:  lnfnli  28899
  Copyright terms: Public domain W3C validator