MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  locfincf Structured version   Visualization version   Unicode version

Theorem locfincf 21334
Description: A locally finite cover in a coarser topology is locally finite in a finer topology. (Contributed by Jeff Hankins, 22-Jan-2010.) (Proof shortened by Mario Carneiro, 11-Sep-2015.)
Hypothesis
Ref Expression
locfincf.1  |-  X  = 
U. J
Assertion
Ref Expression
locfincf  |-  ( ( K  e.  (TopOn `  X )  /\  J  C_  K )  ->  ( LocFin `
 J )  C_  ( LocFin `  K )
)

Proof of Theorem locfincf
Dummy variables  n  s  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 topontop 20718 . . . . 5  |-  ( K  e.  (TopOn `  X
)  ->  K  e.  Top )
21ad2antrr 762 . . . 4  |-  ( ( ( K  e.  (TopOn `  X )  /\  J  C_  K )  /\  x  e.  ( LocFin `  J )
)  ->  K  e.  Top )
3 toponuni 20719 . . . . . 6  |-  ( K  e.  (TopOn `  X
)  ->  X  =  U. K )
43ad2antrr 762 . . . . 5  |-  ( ( ( K  e.  (TopOn `  X )  /\  J  C_  K )  /\  x  e.  ( LocFin `  J )
)  ->  X  =  U. K )
5 locfincf.1 . . . . . . 7  |-  X  = 
U. J
6 eqid 2622 . . . . . . 7  |-  U. x  =  U. x
75, 6locfinbas 21325 . . . . . 6  |-  ( x  e.  ( LocFin `  J
)  ->  X  =  U. x )
87adantl 482 . . . . 5  |-  ( ( ( K  e.  (TopOn `  X )  /\  J  C_  K )  /\  x  e.  ( LocFin `  J )
)  ->  X  =  U. x )
94, 8eqtr3d 2658 . . . 4  |-  ( ( ( K  e.  (TopOn `  X )  /\  J  C_  K )  /\  x  e.  ( LocFin `  J )
)  ->  U. K  = 
U. x )
104eleq2d 2687 . . . . . 6  |-  ( ( ( K  e.  (TopOn `  X )  /\  J  C_  K )  /\  x  e.  ( LocFin `  J )
)  ->  ( y  e.  X  <->  y  e.  U. K ) )
115locfinnei 21326 . . . . . . . 8  |-  ( ( x  e.  ( LocFin `  J )  /\  y  e.  X )  ->  E. n  e.  J  ( y  e.  n  /\  { s  e.  x  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) )
1211ex 450 . . . . . . 7  |-  ( x  e.  ( LocFin `  J
)  ->  ( y  e.  X  ->  E. n  e.  J  ( y  e.  n  /\  { s  e.  x  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) )
13 ssrexv 3667 . . . . . . . 8  |-  ( J 
C_  K  ->  ( E. n  e.  J  ( y  e.  n  /\  { s  e.  x  |  ( s  i^i  n )  =/=  (/) }  e.  Fin )  ->  E. n  e.  K  ( y  e.  n  /\  { s  e.  x  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) )
1413adantl 482 . . . . . . 7  |-  ( ( K  e.  (TopOn `  X )  /\  J  C_  K )  ->  ( E. n  e.  J  ( y  e.  n  /\  { s  e.  x  |  ( s  i^i  n )  =/=  (/) }  e.  Fin )  ->  E. n  e.  K  ( y  e.  n  /\  { s  e.  x  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) )
1512, 14sylan9r 690 . . . . . 6  |-  ( ( ( K  e.  (TopOn `  X )  /\  J  C_  K )  /\  x  e.  ( LocFin `  J )
)  ->  ( y  e.  X  ->  E. n  e.  K  ( y  e.  n  /\  { s  e.  x  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) )
1610, 15sylbird 250 . . . . 5  |-  ( ( ( K  e.  (TopOn `  X )  /\  J  C_  K )  /\  x  e.  ( LocFin `  J )
)  ->  ( y  e.  U. K  ->  E. n  e.  K  ( y  e.  n  /\  { s  e.  x  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) )
1716ralrimiv 2965 . . . 4  |-  ( ( ( K  e.  (TopOn `  X )  /\  J  C_  K )  /\  x  e.  ( LocFin `  J )
)  ->  A. y  e.  U. K E. n  e.  K  ( y  e.  n  /\  { s  e.  x  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) )
18 eqid 2622 . . . . 5  |-  U. K  =  U. K
1918, 6islocfin 21320 . . . 4  |-  ( x  e.  ( LocFin `  K
)  <->  ( K  e. 
Top  /\  U. K  = 
U. x  /\  A. y  e.  U. K E. n  e.  K  (
y  e.  n  /\  { s  e.  x  |  ( s  i^i  n
)  =/=  (/) }  e.  Fin ) ) )
202, 9, 17, 19syl3anbrc 1246 . . 3  |-  ( ( ( K  e.  (TopOn `  X )  /\  J  C_  K )  /\  x  e.  ( LocFin `  J )
)  ->  x  e.  ( LocFin `  K )
)
2120ex 450 . 2  |-  ( ( K  e.  (TopOn `  X )  /\  J  C_  K )  ->  (
x  e.  ( LocFin `  J )  ->  x  e.  ( LocFin `  K )
) )
2221ssrdv 3609 1  |-  ( ( K  e.  (TopOn `  X )  /\  J  C_  K )  ->  ( LocFin `
 J )  C_  ( LocFin `  K )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916    i^i cin 3573    C_ wss 3574   (/)c0 3915   U.cuni 4436   ` cfv 5888   Fincfn 7955   Topctop 20698  TopOnctopon 20715   LocFinclocfin 21307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-top 20699  df-topon 20716  df-locfin 21310
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator