| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > locfincf | Structured version Visualization version Unicode version | ||
| Description: A locally finite cover in a coarser topology is locally finite in a finer topology. (Contributed by Jeff Hankins, 22-Jan-2010.) (Proof shortened by Mario Carneiro, 11-Sep-2015.) |
| Ref | Expression |
|---|---|
| locfincf.1 |
|
| Ref | Expression |
|---|---|
| locfincf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | topontop 20718 |
. . . . 5
| |
| 2 | 1 | ad2antrr 762 |
. . . 4
|
| 3 | toponuni 20719 |
. . . . . 6
| |
| 4 | 3 | ad2antrr 762 |
. . . . 5
|
| 5 | locfincf.1 |
. . . . . . 7
| |
| 6 | eqid 2622 |
. . . . . . 7
| |
| 7 | 5, 6 | locfinbas 21325 |
. . . . . 6
|
| 8 | 7 | adantl 482 |
. . . . 5
|
| 9 | 4, 8 | eqtr3d 2658 |
. . . 4
|
| 10 | 4 | eleq2d 2687 |
. . . . . 6
|
| 11 | 5 | locfinnei 21326 |
. . . . . . . 8
|
| 12 | 11 | ex 450 |
. . . . . . 7
|
| 13 | ssrexv 3667 |
. . . . . . . 8
| |
| 14 | 13 | adantl 482 |
. . . . . . 7
|
| 15 | 12, 14 | sylan9r 690 |
. . . . . 6
|
| 16 | 10, 15 | sylbird 250 |
. . . . 5
|
| 17 | 16 | ralrimiv 2965 |
. . . 4
|
| 18 | eqid 2622 |
. . . . 5
| |
| 19 | 18, 6 | islocfin 21320 |
. . . 4
|
| 20 | 2, 9, 17, 19 | syl3anbrc 1246 |
. . 3
|
| 21 | 20 | ex 450 |
. 2
|
| 22 | 21 | ssrdv 3609 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fv 5896 df-top 20699 df-topon 20716 df-locfin 21310 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |