MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lpval Structured version   Visualization version   Unicode version

Theorem lpval 20943
Description: The set of limit points of a subset of the base set of a topology. Alternate definition of limit point in [Munkres] p. 97. (Contributed by NM, 10-Feb-2007.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
lpfval.1  |-  X  = 
U. J
Assertion
Ref Expression
lpval  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( limPt `  J
) `  S )  =  { x  |  x  e.  ( ( cls `  J ) `  ( S  \  { x }
) ) } )
Distinct variable groups:    x, J    x, S    x, X

Proof of Theorem lpval
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 lpfval.1 . . . . 5  |-  X  = 
U. J
21lpfval 20942 . . . 4  |-  ( J  e.  Top  ->  ( limPt `  J )  =  ( y  e.  ~P X  |->  { x  |  x  e.  ( ( cls `  J ) `
 ( y  \  { x } ) ) } ) )
32fveq1d 6193 . . 3  |-  ( J  e.  Top  ->  (
( limPt `  J ) `  S )  =  ( ( y  e.  ~P X  |->  { x  |  x  e.  ( ( cls `  J ) `
 ( y  \  { x } ) ) } ) `  S ) )
43adantr 481 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( limPt `  J
) `  S )  =  ( ( y  e.  ~P X  |->  { x  |  x  e.  ( ( cls `  J
) `  ( y  \  { x } ) ) } ) `  S ) )
51topopn 20711 . . . . 5  |-  ( J  e.  Top  ->  X  e.  J )
6 elpw2g 4827 . . . . 5  |-  ( X  e.  J  ->  ( S  e.  ~P X  <->  S 
C_  X ) )
75, 6syl 17 . . . 4  |-  ( J  e.  Top  ->  ( S  e.  ~P X  <->  S 
C_  X ) )
87biimpar 502 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  S  e.  ~P X
)
95adantr 481 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  X  e.  J )
10 ssdifss 3741 . . . . . 6  |-  ( S 
C_  X  ->  ( S  \  { x }
)  C_  X )
111clsss3 20863 . . . . . . 7  |-  ( ( J  e.  Top  /\  ( S  \  { x } )  C_  X
)  ->  ( ( cls `  J ) `  ( S  \  { x } ) )  C_  X )
1211sseld 3602 . . . . . 6  |-  ( ( J  e.  Top  /\  ( S  \  { x } )  C_  X
)  ->  ( x  e.  ( ( cls `  J
) `  ( S  \  { x } ) )  ->  x  e.  X ) )
1310, 12sylan2 491 . . . . 5  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( x  e.  ( ( cls `  J
) `  ( S  \  { x } ) )  ->  x  e.  X ) )
1413abssdv 3676 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  { x  |  x  e.  ( ( cls `  J
) `  ( S  \  { x } ) ) }  C_  X
)
159, 14ssexd 4805 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  { x  |  x  e.  ( ( cls `  J
) `  ( S  \  { x } ) ) }  e.  _V )
16 difeq1 3721 . . . . . . 7  |-  ( y  =  S  ->  (
y  \  { x } )  =  ( S  \  { x } ) )
1716fveq2d 6195 . . . . . 6  |-  ( y  =  S  ->  (
( cls `  J
) `  ( y  \  { x } ) )  =  ( ( cls `  J ) `
 ( S  \  { x } ) ) )
1817eleq2d 2687 . . . . 5  |-  ( y  =  S  ->  (
x  e.  ( ( cls `  J ) `
 ( y  \  { x } ) )  <->  x  e.  (
( cls `  J
) `  ( S  \  { x } ) ) ) )
1918abbidv 2741 . . . 4  |-  ( y  =  S  ->  { x  |  x  e.  (
( cls `  J
) `  ( y  \  { x } ) ) }  =  {
x  |  x  e.  ( ( cls `  J
) `  ( S  \  { x } ) ) } )
20 eqid 2622 . . . 4  |-  ( y  e.  ~P X  |->  { x  |  x  e.  ( ( cls `  J
) `  ( y  \  { x } ) ) } )  =  ( y  e.  ~P X  |->  { x  |  x  e.  ( ( cls `  J ) `
 ( y  \  { x } ) ) } )
2119, 20fvmptg 6280 . . 3  |-  ( ( S  e.  ~P X  /\  { x  |  x  e.  ( ( cls `  J ) `  ( S  \  { x }
) ) }  e.  _V )  ->  ( ( y  e.  ~P X  |->  { x  |  x  e.  ( ( cls `  J ) `  (
y  \  { x } ) ) } ) `  S )  =  { x  |  x  e.  ( ( cls `  J ) `
 ( S  \  { x } ) ) } )
228, 15, 21syl2anc 693 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( y  e. 
~P X  |->  { x  |  x  e.  (
( cls `  J
) `  ( y  \  { x } ) ) } ) `  S )  =  {
x  |  x  e.  ( ( cls `  J
) `  ( S  \  { x } ) ) } )
234, 22eqtrd 2656 1  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( limPt `  J
) `  S )  =  { x  |  x  e.  ( ( cls `  J ) `  ( S  \  { x }
) ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   _Vcvv 3200    \ cdif 3571    C_ wss 3574   ~Pcpw 4158   {csn 4177   U.cuni 4436    |-> cmpt 4729   ` cfv 5888   Topctop 20698   clsccl 20822   limPtclp 20938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-top 20699  df-cld 20823  df-cls 20825  df-lp 20940
This theorem is referenced by:  islp  20944  lpsscls  20945
  Copyright terms: Public domain W3C validator