MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltgseg Structured version   Visualization version   Unicode version

Theorem ltgseg 25491
Description: The set  E denotes the possible values of the congruence. (Contributed by Thierry Arnoux, 15-Dec-2019.)
Hypotheses
Ref Expression
legval.p  |-  P  =  ( Base `  G
)
legval.d  |-  .-  =  ( dist `  G )
legval.i  |-  I  =  (Itv `  G )
legval.l  |-  .<_  =  (≤G `  G )
legval.g  |-  ( ph  ->  G  e. TarskiG )
legso.a  |-  E  =  (  .-  " ( P  X.  P ) )
legso.f  |-  ( ph  ->  Fun  .-  )
ltgseg.p  |-  ( ph  ->  A  e.  E )
Assertion
Ref Expression
ltgseg  |-  ( ph  ->  E. x  e.  P  E. y  e.  P  A  =  ( x  .-  y ) )
Distinct variable groups:    x,  .- , y    x, A, y    x, P, y    ph, x, y
Allowed substitution hints:    E( x, y)    G( x, y)    I( x, y)    .<_ ( x, y)

Proof of Theorem ltgseg
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 simp-4r 807 . . . . 5  |-  ( ( ( ( ( (
ph  /\  a  e.  ( P  X.  P
) )  /\  (  .-  `  a )  =  A )  /\  x  e.  P )  /\  y  e.  P )  /\  a  =  <. x ,  y
>. )  ->  (  .-  `  a )  =  A )
2 simpr 477 . . . . . 6  |-  ( ( ( ( ( (
ph  /\  a  e.  ( P  X.  P
) )  /\  (  .-  `  a )  =  A )  /\  x  e.  P )  /\  y  e.  P )  /\  a  =  <. x ,  y
>. )  ->  a  = 
<. x ,  y >.
)
32fveq2d 6195 . . . . 5  |-  ( ( ( ( ( (
ph  /\  a  e.  ( P  X.  P
) )  /\  (  .-  `  a )  =  A )  /\  x  e.  P )  /\  y  e.  P )  /\  a  =  <. x ,  y
>. )  ->  (  .-  `  a )  =  ( 
.-  `  <. x ,  y >. ) )
41, 3eqtr3d 2658 . . . 4  |-  ( ( ( ( ( (
ph  /\  a  e.  ( P  X.  P
) )  /\  (  .-  `  a )  =  A )  /\  x  e.  P )  /\  y  e.  P )  /\  a  =  <. x ,  y
>. )  ->  A  =  (  .-  `  <. x ,  y >. )
)
5 df-ov 6653 . . . 4  |-  ( x 
.-  y )  =  (  .-  `  <. x ,  y >. )
64, 5syl6eqr 2674 . . 3  |-  ( ( ( ( ( (
ph  /\  a  e.  ( P  X.  P
) )  /\  (  .-  `  a )  =  A )  /\  x  e.  P )  /\  y  e.  P )  /\  a  =  <. x ,  y
>. )  ->  A  =  ( x  .-  y
) )
7 simplr 792 . . . 4  |-  ( ( ( ph  /\  a  e.  ( P  X.  P
) )  /\  (  .-  `  a )  =  A )  ->  a  e.  ( P  X.  P
) )
8 elxp2 5132 . . . 4  |-  ( a  e.  ( P  X.  P )  <->  E. x  e.  P  E. y  e.  P  a  =  <. x ,  y >.
)
97, 8sylib 208 . . 3  |-  ( ( ( ph  /\  a  e.  ( P  X.  P
) )  /\  (  .-  `  a )  =  A )  ->  E. x  e.  P  E. y  e.  P  a  =  <. x ,  y >.
)
106, 9reximddv2 3020 . 2  |-  ( ( ( ph  /\  a  e.  ( P  X.  P
) )  /\  (  .-  `  a )  =  A )  ->  E. x  e.  P  E. y  e.  P  A  =  ( x  .-  y ) )
11 legso.f . . 3  |-  ( ph  ->  Fun  .-  )
12 ltgseg.p . . . 4  |-  ( ph  ->  A  e.  E )
13 legso.a . . . 4  |-  E  =  (  .-  " ( P  X.  P ) )
1412, 13syl6eleq 2711 . . 3  |-  ( ph  ->  A  e.  (  .-  " ( P  X.  P
) ) )
15 fvelima 6248 . . 3  |-  ( ( Fun  .-  /\  A  e.  (  .-  " ( P  X.  P ) ) )  ->  E. a  e.  ( P  X.  P
) (  .-  `  a
)  =  A )
1611, 14, 15syl2anc 693 . 2  |-  ( ph  ->  E. a  e.  ( P  X.  P ) (  .-  `  a
)  =  A )
1710, 16r19.29a 3078 1  |-  ( ph  ->  E. x  e.  P  E. y  e.  P  A  =  ( x  .-  y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913   <.cop 4183    X. cxp 5112   "cima 5117   Fun wfun 5882   ` cfv 5888  (class class class)co 6650   Basecbs 15857   distcds 15950  TarskiGcstrkg 25329  Itvcitv 25335  ≤Gcleg 25477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653
This theorem is referenced by:  legso  25494
  Copyright terms: Public domain W3C validator